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Pedestrian Crossing Intention Prediction at
Red-Light Using Pose Estimation

Shile Zhang™', Mohamed Abdel-Aty

Abstract— Pedestrians’ red-light crossing can present a threat
to traffic safety. Among all the existing work related to pedes-
trian’s red-light crossing, there are few studies using trajectory
data in time sequence. This paper uses pose estimation (keypoint
detection) to generate pedestrians’ variables from CCTYV videos.
Four machine learning models are used to predict pedestrians’
crossing intention at intersections’ red-light. The best model
achieves an accuracy of 0.920 and AUC value of 0.849, with
data from three intersections. Different prediction horizons (up to
4 sec) are used. With longer prediction horizons, the sample size
gets smaller, which partially leads to worse model performance.
However, the performance with prediction horizon up to 2 sec
is still good (AUC value as 0.841). It is found that keypoint
variables such as the angles between ankle and knee (left side)
and elbow and shoulder (right side) are important. This model
can be further implemented in the Infrastructure-to-Vehicle (I12V)
applications and thus prevent accidents due to pedestrians’ red-
light crossing by issuing warnings to drivers.

Index Terms— Pedestrian crossing intention, red-light crossing,
pose estimation, artificial intelligence (AI).

I. INTRODUCTION

EDESTRIANS are regarded as the most vulnerable

road users. According to the World Health Organization
(WHO), 1.35 million fatalities were caused due to road crash
annually. Among the total fatalities, 23% were pedestrians’
fatalities [1]. In the U.S., the number of pedestrians’ death
increased by 54% during the 10-year period from 2010 to
2019, from 4,280 deaths in 2010 to 6,590 deaths in 2019 [2].
For pedestrian-related crashes, pedestrian’s unexpected cross-
ing behavior such as suddenly walking out from the designated
crosswalk/sidewalk can be one of the causal factors, especially
the red-light crossings at signalized intersections. Based on
NHTSA Fatality Analysis and Reporting System (FARS),
pedestrians’ red-light crossings can cause hundreds of fatalities
annually. And the number of fatalities has been growing in
recent years [3]. Numerous studies have been carried out
on the prediction of pedestrian’s crossing intention, however,
there are few studies about pedestrian’s crossing intention
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during the red-light signal phase at signalized intersection,
which is a special case that can be more critical.

This paper uses CCTV (closed-circuit television) videos
with pose estimation (keypoint detection) technique to extract
the key landmarks on pedestrians’ bodies. While CCTVs are
not the ideal cameras for advanced computer vision applica-
tion such as pose estimation, substantial benefits would be
made with them to improve pedestrian safety. Besides, they
are cost-efficient due to the wide coverage. Four machine
learning models, Support Vector Machine (SVM), Random
Forest (RF), Gradient Boosting (GBM), and Extreme Gradient
Boosting (XGBoost) based on the generated variables are used.
The dependent variable is divided into three classes, standing,
walking (normal) (i.e., starting to cross during pedestrian
signal phase), and walking (red-light) (starting to cross during
red-light signal phase). The best model achieves an AUC
value of 0.849. Different prediction horizons are taken into
consideration as well.

Compared with traditional studies, this paper uses
pedestrians’ trajectory data to predict pedestrian’s red-light
crossing intention. This is an application of Artificial Intel-
ligence (AI) in transportation safety. With the development
of Infrastructure-to-Vehicle (I2V) technologies, the established
model can be used to warn drivers of unexpected crossing
pedestrians. It can also be used for signal timing optimization
at signalized intersections.

II. LITERATURE REVIEW
A. Pedestrians’ Crossing Intention Prediction

Pedestrians’ crossing intention prediction was typically con-
ducted in the same context with trajectory prediction. Among
all the sensors, Wi-Fi and Bluetooth were usually used for
indoor localization, while camera and LiDAR were used
more in the road environment [4]-[6]. The related studies are
summarized in Table I. It can be found that most studies used
cameras to predict pedestrians’ crossing intention or trajecto-
ries [4], [5], [7]. From the perspective of modeling methods,
three types of methods were mainly used in the literature,
including parametric models such as Kalman Filter (KF)
and Gaussian Process Dynamical Models (GPDMs), machine
learning models such as SVM, and deep learning models
such as long short-term memory (LSTM) [4], [8]-[10]. From
the perspective of the predicting objectives, the output data
were trajectories or crossing/non-crossing intentions [11]-[14].
It was found that pedestrians could change their motions
abruptly, or could stop at any time. Quintero, et al. [15] used
GPDMs and naive-Bayes classifiers to predict pedestrians’
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TABLE I

LITERATURE ON PEDESTRIANS’ INTENTION PREDICTION

Title Sensor Method Objective/output

Bonnin, et al. [17], 2014 Camera Context model tree Crossing intention (crossing/not crossing)

Kooij, et al. [18], 2014 Camera Neural network Trajectory

Ferguson, et al. [19], 2015 Lidar Gaussian process Crossing intention (crossing/not crossing), trajectory
mixture model

Voélz, et al. [20], 2015 Lidar Machine learning Crossing intention (crossing/not crossing)

Goldhammer, et al. [21], 2015 Camera Neural network Trajectory

Quintero, et al. [15], 2015 Camera Gaussian Process Crossing intention (crossing/not crossing), trajectory
Dynamical Models
(GPDM)

Hashimoto, et al. [22], 2015 Camera Dynamic Bayesian Crossing intention (crossing/not crossing)
Network (DBN)

Bock, et al. [23], 2017 Camera Neural network Trajectory

Rehder, et al. [24], 2018 Camera Neural network (LSTM)  Trajectory, goal prediction

Saleh, et al. [12], 2018 Camera Neural network (LSTM)  Behavior (bending in/ starting/ crossing/ stopping)

Minguez, et al. [13], 2019 Camera Gaussian process Behavior (walking/ standing/ starting/ stopping)
dynamical models
(GPDMs)

Abughalieh and Alawneh [25], 2020  Camera Neural network Moving direction, distance to vehicle

Goldhammer, et al. [26], 2020 Camera KF, machine learning Trajectory; behavior (waiting; starting moving,

stopping)

trajectories and crossing intentions. However, trajectories of
more than four seconds were used to predict the next second.
The prediction horizon up to 2.5 sec were regarded as short-
term prediction. The research gap was to find a robust way
with less previous moving profiles as input [16]. Besides, as a
more critical case, pedestrians’ crossing intention at red-light
signals was not emphasized.

It should be noted that it’s usually complicated to define
pedestrians’ crossing intention. Most of the traditional studies
defined pedestrians’ crossing intention as binary categories,
crossing/not crossing. To better define crossing intentions,
some studies classified the pedestrians’ intention into several
categories such as walking, standing, starting, stopping, etc.
[11]-[14], [27]. Hariyono and Jo [11] used observers’ ratings
to label the levels of pedestrians’ intention. In most of the
cases, the pedestrians were labeled with certain categories such
as crossing(1)/not crossing(0). Other categories between 0
and 1 were caused by some of the pedestrians’ behaviors, such
as turning heads to watch for vehicles. Rasouli, et al. [28]
collected a data set labeling pedestrians’ behaviors across
various countries under different lighting conditions. Most of
the behavioral patterns found are the sequences of “standing,
looking, and crossing”, or “moving, looking, and crossing”.

B. Human Pose Estimation

Traditional studies learned pedestrians’ trajectories for pre-
dicting future states. However, it was found that merely

trajectories of pedestrians and vehicles were not suf-
ficient [29], [30]. Body languages such as leg move-
ments or turning of body were indispensable among all the
factors used for predicting pedestrians’ crossing intention. And
there were controversial conclusions about whether pedes-
trian’s gaze or head orientation were important [31]-[33].

The development of pose estimation (keypoint detection)
could better help recognize pedestrians’ states [34]. The pose
estimation technique were used to detect the key points
on human body. Pavllo, et al. [35] first applied a convo-
Iutional neural network on keypoint data generated from
video. Luvizon, ef al. [36] used pose estimation to conduct
activity recognition. [37] used videos to recognize drivers
that were distracted by phones while driving. Face detection,
hand detection, as well as pose estimation of the upper
body were used. Moreover, pose estimation offered a robust
and effective way to estimate pedestrians’ crossing intention
Ghori, ef al. [33] used a long short-term memory (LSTM)
model to predict pedestrians’ and bicyclists’ crossing intention.
A Bayesian inference function was used to predict the prob-
abilities of five categories of behaviors (crossing, stopping,
starting, etc.). Konrad, e al. [38] used a sequence of poses
to extract variables such as lengths, angles, rotation rates,
and linear accelerations formed by pedestrians’ joints. The
kinematic variables of pedestrians were found to be reliable
and accurate enough compared with an inertial measurement
unit (IMU).

Authorized licensed use limited to: University of Central Florida. Downloaded on June 18,2021 at 16:56:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PEDESTRIAN CROSSING INTENTION PREDICTION AT RED-LIGHT

C. Pedestrians’ Red-Light Crossing Behavior

To investigate pedestrians’ red-light crossing intention,

behavioral models such as the theory of planned
behavior (TPB) model and statistical models were
used [22], [39]-[41]. It was found that pedestrians’

characteristics, such as age, gender, grouping behavior,
pedestrian volume, and safety awareness were significant
factors [42], [43]. More emphasis should be placed on
integrating pedestrians’ characteristics into the analysis.
Besides, the pedestrians’ red-light crossing intention
increased with longer waiting time, especially during the last
few seconds before crossing [42], [44].

Compared with traditional traffic lights, countdown dis-
plays can significantly improve pedestrians’ signal compli-
ance [45]. However, countdown displays are often installed
near schools or busy intersections. As the studied loca-
tions in this paper are mostly located on major arterials
in suburban area, the traditional traffic signals are installed.
Pedestrians who cross at red-light have potential conflicts
with the high-speed vehicular traffic. Besides, the push-
button operation at intersections can help to separate the
vehicular traffic and pedestrians, thus improving pedestrian
safety [46], [47].

Despite the existing work on modeling of pedestrians’ red-
light crossing intention, few work used sequential data [48].
With the development of Infrastructure-to-Vehicle (I2V) tech-
nology, the prediction of the pedestrians’ red-light crossing
intention can be integrated with other communication media
to warn drivers.

This study presents the prediction of pedestrians’ red-
light crossing intention. Pose estimation is used to generate
pedestrians’ variables from videos. Four machine learning
models, Support Vector Machine (SVM), Random Forest (RF),
Gradient Boosting (GBM), and Extreme Gradient Boosting
(XGBoost), are used to predict pedestrians’ red-light crossing
intentions from 1 sec up to 4 sec ahead. The best model
achieves a recall value of 0.757 on the walking (red-light) class
and an overall AUC value of 0.849.The model performance is
still good when the model is used for predicting pedestrians’
red-light crossing intentions 2 sec ahead, with the AUC value
as 0.841. This work can be applied in the I2V environment to
better warn drivers.

III. DATA COLLECTION

The videos used in this study are from three signalized inter-
sections located in Seminole County, Florida. All the videos
are collected using CCTV (closed-circuit television) cameras
during 8:00-19:00 on five sunny workdays in October and
November 2019. All the intersections are four-lane by two-lane
intersections to ensure the performance of the pose estimation
model. The detailed information is listed in Table II. A total
of 150-hour of videos are processed with 182 pedestrians
collected as valid samples. The pedestrians’ trajectories before
crossing (in waiting zone) are extracted. Another data source
is ATSPM (Automated Traffic Signal Performance Measures)
signal timing data to label pedestrians who cross at the
red-light [49].

TABLE 1I
LoCATIONS (DATA COLLECTION)

Vehicle

. Road width volume Vehicle

Intersection . . . . approach speed
(major/minor)  (daily, major R
. (major road)
/minor road)

US 17-92@3™ St 61 ft/20 ft 24023/9519 28 mph
US 17-92@13™ St 62 ft/36 ft 24251/4769 27 mph
SR 46@Park Dr 63 /39 ft 9959/5864 32 mph

.’.

Fig. 1. Pedestrian keypoint detection and transformation.

A. Video Processing

1) Pose Estimation and Object Tracking: The main objec-
tive of pose estimation is to derive a representation of the
pedestrian’s skeleton from each frame of video. Eighteen key
points on the human body are generated, as shown in Fig. 1 (a),
which mainly include nose, eyes, shoulders, elbows, wrists,
hips, knees, ankles, etc. [50], [51]. The object tracking model
is used to follow the movement of each road user, and generate
the trajectory of the pedestrian [52]. The blue number on the
top left corner of the bounding box is the pedestrian’s tracking
ID number. The number on the bottom right corner is the
confidence level of pose estimation model.

As shown in Fig. 1 (b), the coordinates of keypoint are first
normalized and transformed to the egocentric coordinates on
the pedestrian’s body. The origin of this egocentric coordinate
system is located at the middle point between left hip and right
hip, with three orthogonal axes. Previous studies have found
that variables from human bodies such as angles formed by
joints were related to their acceleration [38]. Thus, some of the
angles generated between joints (such as angle between left
wrist and left elbow ag7, angle agy between right ankle and
right knee, etc.) are extracted as input variables for further
modeling. Facial variables such as angle between nose and
eye are also extracted as they can potentially reflect head
orientation.

2) Perspective Transformation: The middle bottom point on
the pedestrian’s bounding box (in Fig. 1 (b)) can be used
as the reference point to locate the pedestrian. To create a
mapping between image coordinates and world coordinates,
perspective transformation is conducted. As shown in Equation
(1), suppose the point on a video frame is (u, v, 1), and the
respective world coordinate is (X, Y, 1), a homograph matrix
h is used to convert the coordinates from image plane to
world plane. h matrix contains nine values in total, from /
to ho. This is a typical Perspective-n-Point problem, which
is to calibrate the camera given n points on the image plane
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and their corresponding projections on the world plane [53].
A linear least squares method is used [54], [55]. As shown
in Equation (2), the image coordinates (u;, v;) and the world
coordinates (X;, ¥;) (GPS coordinates in decimal degrees) are
used to form matrix A. Each pair of points forms two rows of
matrix A. Singular value decomposition (SVD) method is used
to derive the solution by minimizing the value of ||Ah| with
ho = 1. After obtaining k& matrix and the inverse matrix of 4,
all generated image coordinates can be transformed to world
coordinates. The walking speed is calculated using haversine
formula, which is the distance traveled by a pedestrian between
two timestamps 71 and > (Equation (3)).

u X hi hy hy X
v|l=h|Y |=|hy hs hg Y (1)
1 1 hs he ho 1
m i
ho
0 00-X; Y11 X7 ov1Y7 o hs
X1 Y1 0 0 0—u1 X1 —u1Y1 —u ha
Axh—= 0 00—-Xy Y1 0Xo 02Yy 0 hs |=0
XoY,1 O 0 0 —uxXy —urYr» —up he
hg
(2)
h ] X1, Y1), (X2, Y,
Wallking speed = aversine((X1, Y1), (X12, Y2)) 3)

(—1)

B. Input Variables Overview

Using pose estimation, the angles between some of the
key joints are generated. Besides, pedestrians’ walking direc-
tions, waiting time (time elapsed after the pedestrian reaches
the waiting zone), walking speed, and whether pedestrian
presses the pushbutton (to activate pedestrian signal phase),
are also used as input variables. Some external variables
are also included. The hourly temperature data are from
National Oceanic Atmospheric Administration (NOAA). Total
vehicle volume and right-turn vehicle volume at the cur-
rent signal cycle, and green time of the vehicle signal
phase on pedestrian’s conflicting direction are extracted
from ATSPM. An overview of all input variables is listed
in Table III.

C. Pedestrians’ Crossing Intention Labeling

Previous studies found that pedestrians’ red-light inten-
tion increased when waiting time increased [42], [44]. Thus,
the last few moments are an important research target when
a pedestrian approaches the road, stops at the curb (waiting
zone), and finally starts crossing at red-light. Fig. 2 (a) shows
a sequence of video frames. The time-to-cross has been
previously used in the related work as the time difference
between each frame and the frame when the pedestrian starts
crossing [33], [56]. Time-to-cross equals zero means that the
pedestrian starts to cross. As the time-to-cross gets closer
to zero (shown in Fig. 2 (b)), the pedestrian behaves more
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(b) Red-light crossing intention on the timeline

Fig. 2. The red-light crossing intention of a pedestrian over time.

and more impatiently while looking around and watching
for approaching traffic. Meanwhile, his crossing intention
becomes clearer over time.

On average, the time intervals pedestrians spent on observ-
ing the surrounding environment are between 1 sec and 2 sec,
which are around 1.32 sec for adults and 1.45 sec for the
elderly and children [28]. This time interval is important for
the decision-making of the crossing/not-crossing behavior. So,
the last 1 sec to 2 sec before crossing can be important for
the prediction of pedestrian’s red-light crossing behavior.

In this study, the dependent variable is pedestrians’ crossing
intention. The labeling procedure is shown in Fig. 3. The
CCTV videos are first processed using pose estimation and
object tracking techniques. The frame rate of CCTV videos
is 30 frames per second (fps). The samples in every 0.5 sec
are then smoothed and aggregated into one sample to remove
noise. The samples in the waiting zones are labeled with
three classes, standing, walking normally (for pedestrians who
cross during pedestrian signals), and walking at red-light (for
pedestrians who cross at red-light). Basically, the first class is
from the video frames when the pedestrians stand still, and
the other two classes are from the video frames when the
pedestrians start to cross (last 1 sec - 2 sec before time-to-
cross=0). The labels are validated through manual checks to
ensure accuracy.

For prediction purpose, we suppose the driver will yield to
pedestrians after capturing the pedestrians’ crossing intentions
after the reaction time 1 sec [57]. In this case, vehicles travel at
20 mph will have a stopping distance of 40 ft. The dependent
variable is shifted 1 sec ahead of time (Fig. 4). This is regarded
as the prediction horizon. The generated data set is later split
into training set and test set for further modeling.
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TABLE III

INPUT VARIABLE OVERVIEW

Description Mean Standard deviation Minimum Maximum Unit
Walking direction 3.154 1.659 0.079 6.259 Rad
Walking speed 1.418 1.042 0.026 3.091 Ft/s
Pushing button 0.725 0.446 0.000 1.000 -
Waiting time 10.485 10.001 0.500 55.667 Sec
Angle a (ear & eye, left) 1.362 0.792 7.5e-04 3.135 Rad
Angle a (ear & eye, right) 0.521 0.270 2e-04 3.141 Rad
Angle a (nose & eye, left) 1.374 0.870 3e-04 3.134 Rad
Angle a (nose & eye, right) 0.397 0.214 9.70e-05  3.091 Rad
Angle a (elbow & shoulder, left) 0.583 0.340 1e-03 3.116 Rad
Angle a (elbow & shoulder, right) 0.692 0.458 le-03 3.140 Rad
Angle a(wrist & elbow, left) 0.649 0.406 4e-04 3.139 Rad
Angle a (wrist & elbow, right) 0.629 0.487 le-04 3.129 Rad
Angle a (ankle & knee, left) 0.801 0.592 8e-04 3.132 Rad
Angle a (ankle & knee, right) 0.756 0.576 7.49¢-05  3.122 Rad
Vehicle volume (current cycle) 72.000 16.102 20.000 120.000 -
Vehicle green time (current cycle) 45.208 21.575 0.007 84.256 Sec
Vehicle counts (right-turn, current cycle) 5.000 3.060 0.000 11.000 -
Temperature 83.847 3.337 68.000 89.000 Fahrenheit
Input variables Dependent variable
I e —— s
o X X X L
] oo b e |
Waiting zone ‘ ‘ Red-light crossing pedestrians : :
[ r
! l Y3 &
‘ Standing still ’ Wallking ‘ Eri th 2 ‘§<
[
l [ ] Xe-11 Xe-12 Xe—13 - (Ve
‘ Yo = standing ’ y; = walking (normal) ‘ y, =walking (red-light) X ‘1 X t2 X 3 Yt }

Fig. 3.

Procedure of labeling the dependent variable.

IV. EXPERIMENT AND RESULTS

Four machine learning models, SVM, RF, GBM, and
XGBoost are established to predict pedestrians’ red-light
crossing intentions. The models’ hyper-parameters are tuned
to reach the best performance.

A. Evaluating Metrics

The evaluating metrics, such as precision, recall, F1 score,
accuracy, and AUC are illustrated as below.

(1) Precision: the proportion of correctly classified samples
among classified positive samples, as shown in Equation (4).

(2) Recall: or sensitivity, the proportion of correctly clas-
sified samples among actual positive samples, as shown in
Equation (5).

(3) F1 score: a weighted average of precision and recall,
as shown in Equation (6).

(3) Accuracy: the proportion of correctly classified samples
among all the samples, as shown in Equation (7).

(4) AUC: area under the ROC curve. The ROC (Receiver
Operating Characteristic) curve is used as a comprehen-

Timeline y

Fig. 4. Shifting the dependent variable (1 s) ahead.

sive metric to evaluate the model’s performance. This curve
plots two parameters, recall and false alarm rate (FAR),
at different classification thresholds. The AUC value, which
ranges from 0.5 to 1, is the area under the ROC curve.
For an imbalanced data set, the AUC value is more reliable
than accuracy.

o TP
Precision = —— 4
TP+ FP
TP
Recall = ———— (5)
TP+ FN
2 % Precision x Recall
Flscore = — (6)
Precision + Recall
TP+ TN
Accuracy = (7

TP+FP+FN+TN

B. Experiment Results

Among all the 182 pedestrians collected from CCTV data,
61 pedestrians start to cross the road during the red-light
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TABLE IV
CLASSIFICATION REPORT FOR FOUR USED MODELS (ON TEST DATA SET)
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TABLE V
CONFUSION MATRIX FROM RF MODEL (TEST DATA SET)

Model  Class Prems Recall Fl Accuracy AUC
0on score
Walking 0714 0400 0513 03838 0.668
(red-light)
SVM Macro 0797 0562  0.659
average
Walking __ 0.800 0757 0.778 0.920 0.849
RF (red-light)
Macro 0859 0818  0.837
average
Walking 0800 0673 0.731 0903 0318
(red-light)
GBM  \acro 0846 0751  0.796
average
Walking 0818 0667 0735 0912 0.836
(red-light)
XGBT  \racro 0862 0777 0817
average

*Marked in bold: the best model; macro average: average value of the metrics
over three classes.

signals. With the sampling time window as 0.5 sec, there
are 2,375 data samples collected, with the number of samples
between the three classes is 1,725: 407: 243. Eighty percent
of the samples are used as the training data set, and twenty
percent of the samples are used as the test data set. Synthetic
Minority Over-Sampling Technique (SMOTE) is used to bal-
ance the numbers of samples in three classes in the training
data set, to make all three categories balanced [58], [59].

In this study, the dependent variable is divided into three
classes, standing, walking (normal), and walking (red-light).
The last class is the most critical class. So, the model’s
performance of this class should be put more emphasis on.
Meanwhile, the average value of metrics over three classes,
which is usually called macro average value, is also calculated.
The modeling results of the four models with prediction
horizon as 1 sec are listed in Table I'V.

The best model is determined to be RF. The recall value for
walking (red-light) class is 0.757, which means the model can
recognize 75.7% of the samples (video frames) in which the
pedestrians start walking at red-light. Meanwhile, the precision
value is 0.800. It also achieves the best performance over three
classes compared with the other models. Overall, RF achieved
an accuracy of 0.920 and an AUC value of 0.849 over the test
data set.

Confusion matrix is usually used to check the overall
performance of the model, and identify the specific errors
affecting each class. The confusion matrix of the RF model
on the test data set is shown in Table V. Most of the samples
in each class are classified correctly, denoting the model has
a good performance.

The variable importance plot with the top fifteen important
variables is shown in Fig. 5. It can be found that walking
speed, waiting time, green time (vehicle signal phase), pushing
button behavior play important roles for predicting pedestri-
ans’ red-light crossing intention. Besides, the angles between
knee and ankle (on the left side) also play an important role.
Facial variables are also found to be important, such as the
angle between left ear and left eye. This may be related

Predicted class

. Walking Walking
Standing imal)  (red-light)
Standing 362 7 5
Actual ) AIking 15 46 2
(normal)
class K
Walking 5 28

(red-light)
*Marked in bold: number of correctly classified samples.

walking speedl
waiting timel
green time|
pushing button [N
or_knee&ankle(L)_
right-turn vehicles_
temperature [
‘a_elbow&shoulder(R)_
a_ear&eye(L)_
a_nose&eye(R)_
a_knee&ankle(R)l
a_nose&eye(L)|
a_elbow&shoulder(L)l
aﬁear&eye(R)l
a_elbow&shoulder(R)l

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.1
feature_importance

feature_names

Fig. 5. Variable importance (top 15) from RF model.
TABLE VI
CLASSIFICATION REPORT WITH DIFFERENT VALUES
OF PREDICTION HORIZON
Prefiiction Class Precision  Recall Fl Accuracy AUC
horizon score
Walking
; 0.800 0.757 0.778
1 sec red-ligho 0920  0.849
0.859 0.818  0.837
average
Walking
. 0.838 0.623  0.715
2 sec red-ligho) 0920 0841
0.813 0.797  0.797
average
Walking
. 0.750 0.316 0.444
3 sec (red-1ight) 0.889  0.719
0.795 0.619 0.674
average
Walking
. 0.625 0.417  0.500
4 sec red-ligho) 0925  0.688
0.769 0.715  0.735
average

*Macro average: average value of the metrics calculated over three classes.

to head orientation. As the data are collected in Florida,
where extremely hot weather is usually present at noon,
the temperature is also an influencing factor.

Given higher speed limits, there is a need to use longer
prediction horizon to build the model. Thus, the other values,
2 sec, 3 sec, and 4 sec, are also taken into consideration.
The experiment results are shown in Table VI. When the
prediction horizon is 2 sec, the model still maintains an AUC
value of 0.841. With the prediction horizon increases to up
to 4 sec, the sample size keeps shrinking. So, the model’s
performance on walking (red-light) class (the most minority
class) gets worse, resulting in low values of the evaluating
metrics. Besides, the macro average values of evaluating met-
rics show an overall tendency of decreasing. For an imbalanced
data set, the AUC can better reflect model performance than
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TABLE VII
CLASSIFICATION REPORT FOR GENERAL CASE (ON TEST DATA SET)

Model  Class Precision  Recall Fl Accuracy AUC
Score
Walking ~ 0.717 0589  0.647
SVM 0.862 0.763
Macro = g5 0763 0781
average
Walking  0.883 0.817 0.849
RF 0.924 0.889
Macro 0.909 0.855 0.878
average
Walking  0.869 0736  0.797
GBM 0.921 0.886
Macro - g 0853 0874
average
Walking ~ 0.797 0708 0.750
XGBT 0.900 0.830
Macro 0.861 0.830  0.844
average

*Marked in bold: the best model; macro average: average value of the metrics
calculated over three classes.

accuracy. The AUC shows a steady decreasing tendency with
the prediction horizon increases.

C. Comparison Study

For comparison, a more general model is also established.
Without including the information of the red-light signals,
pedestrians’ crossing intentions are divided into standing and
walking. As shown in Table VII, the experiment results on the
test data set is shown as below. It can be found that the best
model achieves the recall value of 0.817 on the walking class,
and an AUC value of 0.889.

V. CONCLUSION AND DISCUSSION

This paper uses video data to predict pedestrians’ red-
light crossing intentions at the signalized intersections with
pose estimation and various machine learning models. The
highlights of the study mainly include:

(1) The pose estimation technique is used to capture the
variables of the pedestrians’ bodies, such as angles formed
by some of the key joints (wrist, elbows, etc.) and facial
landmarks (nose, eyes, and ears) over time.

(2) Upon labeling the dependent variable, pedestrians’ red-
light crossing intention, the study takes into consideration
both mobility (standing/walking) and pedestrians’ red-light
crossings.

(3) Four machine learning models are used to predict
the pedestrians’ red-light crossing intentions with multiple
prediction horizons. The best model achieves an AUC value
of 0.849.

Through the established models, there are a few points
to be marked on pedestrians’ crossing intention prediction.
The walking speed is the top important variable to reflect
pedestrians’ crossing intentions. The other variables such as
button pushing and waiting time may be related to red-light
violations. The leg movement denoting by the angle between
knee and ankle is an important variable. Compared with the
body part, the facial landmarks also reveal early signs of
starting walking, which can be related to head orientation.

With respect to different prediction horizons, though the
evaluating metrics on walking (red-light) class fluctuate,

the model still shows a fairly good performance over all
target classes. Overall, the AUC value decreases as prediction
horizon increases. When the prediction horizon is 2 sec the
model’s performance is still good, with the recall value as
0.623 (on walking (red-light) class and AUC value as 0.841.

A more generic model with the dependent variable labeled
as standing/walking is also established for comparison. It can
be found that the model’s performance gets improved, with the
AUC value as 0.889. If the signal timing data is not available,
then this model can be used instead for warning approaching
vehicles, especially the right-turn vehicles.

The limitation of this study is that data from merely three
intersections are used with similar geometric design (four-
lane by two-lane intersections). But as the CCTV cameras are
installed at different locations with different angles, the model
successfully deals with the heterogeneity of the generated data
set. The study sheds light on the application of pose estimation
for studying pedestrian safety. The variables automatically
generated from pose estimation can better predict pedestri-
ans’ red-light crossing intention compared with only mobility
variables such as position and speed [48]. Future work can
be conducted to implement the proposed model in field
test.
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