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A B S T R A C T   

Pedestrian safety plays an important role in the transportation system. Intersections are dangerous locations for 
pedestrians with mixed traffic. This paper aims to predict the near-accident events between pedestrians and 
vehicles at signalized intersections using PET (Post Encroachment Time) and TTC (Time to Collision). With 
automated computer vision techniques, mobility features of pedestrians and vehicles are generated. Extreme 
Value Theory (EVT) is used to model PET and minimum TTC values to select the most appropriate threshold 
values to label pedestrians’ near-accident events. A Gated Recurrent Unit (GRU) neural network is further used to 
predict these events. The established model reaches an AUC (Area Under the Curve) value of 0.865 on the test 
data set. Moreover, the proposed model can also be applied to develop collision warning systems under the 
Connected Vehicle environment.   

1. Introduction 

Globally, traffic accidents are estimated to be the eighth leading 
cause of deaths for people of all age groups. In the U.S., pedestrians 
make for 11.8 % of all road fatalities (Centers for Disease Control and 
Prevention, 2019). In 2019, 6590 pedestrian deaths were caused due to 
traffic accidents, ranked the highest for the last three decades (Gover-
nors Highway Safety Association, 2020). As accident reports can miss 
important details of the mechanisms of accidents, surrogate safety 
measures (SSMs) were widely used as a proactive approach for analyzing 
pedestrians’ safety conditions (Tarko et al., 2009; Ismail et al., 2010; 
Zaki and Sayed, 2014). SSMs have multiple indicators, which are also 
referred to as traffic conflict indicators. The interaction between two 
road users, as a simultaneous arrival in a specific limited area, is defined 
as an “event” (Hydén (1987). As shown in Fig. 1, this pyramid describes 
the relationships between traffic events’ severity and their frequency of 
occurrence. The events at the top of the pyramid are traffic accidents, 
such as fatal accidents, injury accidents, and PDO (Property Damage 
Only) accidents. Accidents are rare events and the higher the severity 
the lowest the frequency. Moreover, most of the interactions are safe 
passages, which are located at the bottom (also the most significant part) 
of the pyramid. Between safe passages and accidents are traffic conflicts, 

which can be used to describe the “near-accident” events (Hydén, 1987). 
Depending on the severity, the conflicts can be categorized into severe 
conflicts, slight conflicts, and potential conflicts. There are various in-
dicators for traffic conflicts, such as Time to Accident (TA) (Hydén and 
Linderholm, 1984), Post Encroachment Time (PET) (Cooper, 1984; 
Ismail et al., 2010), Time to Collision (TTC) (Ismail et al., 2009; Tarko, 
2019), Gap Time (GT) (Archer, 2004; Ismail et al., 2010), etc. The details 
of these indicators are listed in Table 1. Most of the indicators consist of 
continuous values during the whole interaction course, such as TTC, GT, 
and DST, while PET and TA use discrete values to describe the 
interaction. 

A single indicator cannot accurately fully reflect the actual situation. 
For example, small TTC values can be observed when either one of the 
road users takes evasive actions at the urgent situations, or when a 
vehicle moves towards a pedestrian at a very low speed (Ni et al., 2016). 
The combination of different indicators (Ni et al., 2016; Kathuria and 
Vedagiri, 2020), or new indicators such as using motion predictions 
were proposed, to complement each other and better predict pedestrian 
safety conditions (Mohamed and Saunier, 2013). Among these insights 
to use multiple conflict indicators, it was found there was strong cor-
relation between GT and PET, while no correlation between TTC and 
other indicators (Ismail et al., 2010). Kathuria and Vedagiri (2020) 

☆ This paper has been handled by associate editor Tony Sze. 
* Corresponding author. 

E-mail addresses: shirleyzhang@Knights.ucf.edu (S. Zhang), m.aty@ucf.edu (M. Abdel-Aty), jessicawyn@Knights.ucf.edu (Y. Wu), ouzheng1993@gmail.com 
(O. Zheng).  

Contents lists available at ScienceDirect 

Accident Analysis and Prevention 

journal homepage: www.elsevier.com/locate/aap 

https://doi.org/10.1016/j.aap.2020.105844 
Received 28 July 2020; Received in revised form 8 October 2020; Accepted 11 October 2020   

mailto:shirleyzhang@Knights.ucf.edu
mailto:m.aty@ucf.edu
mailto:jessicawyn@Knights.ucf.edu
mailto:ouzheng1993@gmail.com
www.sciencedirect.com/science/journal/00014575
https://www.elsevier.com/locate/aap
https://doi.org/10.1016/j.aap.2020.105844
https://doi.org/10.1016/j.aap.2020.105844
https://doi.org/10.1016/j.aap.2020.105844
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2020.105844&domain=pdf


Accident Analysis and Prevention 148 (2020) 105844

2

divided different interaction patterns according to the profiles of PET 
and TTC. Ni et al. (2016) used observers’ rating-based approach to 
classify the interaction patterns into three severity categories, using the 
values of TTC and GT. However, most of the existing studies failed to do 
so, and used a single indicator or a static value to represent the inter-
action course instead. 

Upon selecting the threshold values to identify pedestrians’ near- 
accident situations, some studies investigated different threshold 
values of the SSMs indicators (Mahmud et al., 2017; Borsos et al., 2020). 
Among them, the Extreme Value Theory (EVT) was used. The EVT model 
could be employed to model the stochastic behavior of a process with 
unusually large or small levels (Coles et al., 2001). The fitted distribu-
tions of SSMs indicators could be used to estimate the frequency of ac-
cidents (Tarko, 2018; Zheng and Sayed, 2019b). Upon selecting the best 
fitted models, the desirable indicators and the threshold values could be 
decided (Songchitruksa and Tarko, 2006; Zheng and Sayed, 2019a; 
Borsos et al., 2020). 

The interactions between pedestrians and vehicles are usually 
complicated, as either party can change the course or the speed suddenly 

(Ni et al., 2016; Kathuria and Vedagiri, 2020; Yue et al., 2020). 
Compared with other road sensors such as loop and Bluetooth sensors, 
video sensors show advantages with a more microscopic view. A few 
studies used video sensors to analyze SSMs indicators (Zaki and Sayed, 
2014; Wu et al., 2020). With the development of automated video 
processing techniques, it is possible to generate trajectory profiles of the 
road users in time series (Ismail et al., 2010; Zaki and Sayed, 2014; Wu 
et al., 2020; Zhang et al., 2020). These can be better used to predict the 
pedestrians’ situations, using the continuous values of pedestrians’ 
mobility features. 

Deep learning techniques have been applied to the transportation 
field with various applications, such as computer vision, time series 
prediction, classification, and optimization problems (Wang et al., 
2019b; Gong et al., 2020; Li et al., 2020). The most popular types of deep 
learning techniques, neural network models, can employ multiple layers 
and convolutional layers to extract the high-level features from the data. 
For sequential data-related problems such as handwriting recognition, 
speech recognition, and natural language processing, the recurrent 
neural networks are used with internal memory cells to exhibit the 
temporal dynamic features from the input data (Graves et al., 2020; Cho 
et al., 2014). Recurrent neural networks have many variants such as long 
short-term memory neural network (LSTM), bidirectional recurrent 
neural network, gated recurrent unit (GRU), etc. (Hochreiter and 
Schmidhuber, 1997; Schuster and Paliwal, 1997; Cho et al., 2014). The 
LSTM neural networks can capture long-term dependencies of time se-
ries data by introducing a special memory unit (Hochreiter and 
Schmidhuber, 1997). Over the years, it is found that removing some 
components of the LSTM won’t affect the performance of the model. 
GRU is proposed with a simpler memory unit, which makes it easier to 
train and implement (Cho et al., 2014). Thus, the training efficiency of 
GRU is improved as well. However, LSTM can remember longer se-
quences than GRU. GRU was employed in the transportation field to 
conduct traffic condition forecasting, and travel time prediction, etc. 
(Zhao et al., 2018, 2019). It is expected to be a more efficient option to 
model sequential data, especially trajectory data generated from videos. 

This study uses GRU to predict the pedestrians’ near-accident events 
at signalized intersections. With PET and TTC indicators generated from 
videos, Extreme Value Theory is used to select the best threshold values. 
The near-accident events of pedestrians are classified into three severity 
categories. With the sequential data generated from pedestrians’ and 
vehicles’ trajectories, the GRU model reaches an AUC (Area Under the 
Curve) value of 0.865 on the test data set. The proposed model can be 
used to warn drivers of the potentially dangerous situations involving 
pedestrians if to be implemented in the Connected Vehicle (CV) 
environment. 

2. Data Collection 

The video data used in this study are collected at two signalized in-
tersections (intersection 1: (latitude: 28.800916, longitude: 
− 81.27317); intersection 2: (latitude: 28.809715, longitude: 
− 81.27317)) located in Seminole County, Florida using CCTV (closed- 
circuit television) cameras. All the videos are captured during 
8:00− 19:00 on sunny workdays during October and November 2019. A 
total of around 80-h videos with 150 pedestrians are collected. Auto-
mated computer vision techniques, such as object detection, object 
tracking, and perspective transformation are used to process the video 
data. 

2.1. Video preprocessing 

2.1.1. Object detection 
The object detection model is used to classify different kinds of road 

users, i.e., human beings and vehicles. The detection model used in this 
study is Mask R-CNN (Region-based Convolutional Neural Network), the 
state-of-the-art automated object detection model (He et al., 2020; Ou 

Fig. 1. The pyramid - interactions between road users as a continuum of events 
(Hydén, 1987; Tarko, 2012). 

Table 1 
Definitions of traffic conflict indicators (Kathuria and Vedagiri, 2020).  

Indicator Definition Type of indicator 

Time to Collision 
(TTC) 

The time required for two road 
users to collide if they continue at 
their present speeds and on the 
same paths (Hayward, 1972) 

A set of values 
continually 
calculated over time 

Post Encroachment 
Time (PET) 

The time difference between the 
moment an offending road user 
leaves the area of a potential 
collision and the moment of 
arrival of the conflicting road user 
(Cooper, 1984) 

A discrete value 

Gap Time (GT) The time lapse between the first 
road user leaves the conflict zone 
and the second road user arrives if 
they continue with the same 
velocity and trajectory (Archer, 
2004) 

A set of values 
continually 
calculated over time 

Deceleration to 
Safety Time (DST) 

Deceleration required for the 
second road user to reach the 
conflict zone no earlier than the 
first user leaves it (Hupfer, 1997) 

A set of values 
continually 
calculated over time 

Time to Accident 
(TA) 

The time that remains to an 
accident happening from the 
moment when one of the road 
users starts an evasive action ( 
Hydén and Linderholm, 1984) 

A discrete value  
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Zheng, 2019). The Mask R-CNN model is adapted from Faster-RCNN 
(Ren et al., 2020). The detection model can classify different kinds of 
objects in a frame and generate a segmentation mask. It first scans the 
whole image and estimates the areas that are likely to contain an object, 
then classifies the objects in each crop of these areas. This mechanism 
ensures the good performance of the detection model, especially on 
small objects that are usually hard to detect (Ou zheng et al., 2019). 

2.1.2. Object tracking 
The object tracking model is used to take the initial sets of detection 

model and track the movements of each road user. The tracking method 
used is CSRT (DCF-CSR, Discriminative Correlation Filter with Channel 
and Spatial Reliability) tracker from OpenCV (Open Sources Computer 
Vision) library (Bradski, 2019; Ou Zheng, 2019; Ou Zheng and Xin, 
2019). The detection model and the tracking model are used to generate 
the trajectories of the road users from videos. 

2.1.3. Perspective transformation 
As the image is a 2D plane, it is hard to generate the actual locations 

of the objects from images. To create a mapping between the image 
coordinates and the world coordinates, perspective transformation is 
conducted. As shown in Eq. (1), the image coordinate is (u, v, 1), and the 
world coordinate is (X,Y, 1), a homograph matrix h is the middle matrix 
to convert the coordinates from image plane to world plane. h matrix 
contains nine values in total, from h1 to h9. 

To obtain the h matrix, a linear least-squares method is used 
(Naphade et al., 2019; ̌Spanhel et al., 2019; Tang et al., 2019). As shown 
in Eq. (2), the coordinates (ui, vi) from the image plane, which are the 
middle points of the bottom lines from the generated bounding boxes, 
and the coordinates (Xi,Yi) from the world plane (GPS coordinates in 
decimal degrees), are used to form matrix A. Each pair of points forms 
two rows of matrix A. Singular value decomposition (SVD) method is 
used to obtain the solution with h9 = 1. Namely, the SVD derives the 

solution for minimizing the value of ‖Ah‖. Using the inverse matrix of h, 
the image coordinates (ui, vi) can be transformed to (Xi,Yi). However, 
since the GPS coordinates are in decimal degrees, it will generate some 
inaccuracies when calculating distances between different objects due to 
the curvature of the Earth. To eliminate this effect, the coordinates in 
GPS are further transformed into a linear coordinate system UTM 
(Universal Transverse Mercator) system (zone:17). 
⎛
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2.2. PET and TTC generations 

After object detection, object tracking, and perspective trans-
formation, an example of the generated trajectories of pedestrians and 
vehicles are shown on Google Maps© as in Fig. 2. 

To estimate the near-accident events of pedestrians at the two 
studied locations, two surrogate safety indicators, PET and TTC during 
the interactions are used. The PET indicator is defined as the time dif-
ference between the moment when the first road user leaves the conflict 
point and the moment when the second road user reaches it (Allen et al., 
1978). And the conflict points, which can be seen as potentially 
dangerous locations for pedestrians, are extracted from the actual tra-
jectories of the conflicting pedestrians and vehicles. The potential 

Fig. 2. Trajectories of the road users from videos.  
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conflict points of PET values ranging from 0 to 10 s at the studied in-
tersections are shown in Fig. 3. The black stars are the places where 
pedestrian-related accidents happened during the past ten years 
(2010–2020). There were two pedestrian-related accidents happened at 
each location. The TTC indicator is dynamically calculated using the 
time difference between the pedestrian and the vehicle before they reach 
the potential conflict points based on their current speed. Usually, the 
minimum TTC (mTTC) during an interaction course is used to represent 
the severity of the interaction (Ni et al., 2016; Kathuria and Vedagiri, 
2020). Thus, in this study, both PET and mTTC are used as safety in-
dicators to classify the severity levels of the pedestrian-vehicle 
interactions. 

3. Methodology 

3.1. Gated recurrent unit (GRU) 

As trajectory data are in time series, the recurrent neural networks 
can be used to better handle sequential data. Different from traditional 
neural networks, the output of the recurrent neural network from the 
current time slice is the input of the next time slice. Suppose x1, x2, x3 
are the input vectors, h1, h2, h3 are the hidden state vectors, and y1, y2,

y3 are the output vectors. At the time slice t, the hidden state vectors ht 
are computed by the input vector xt, the previous hidden state vector 
ht− 1, and the weights wx

t and wh
t . Thus, the output is produced by joining 

hidden layer vectors together with input from previous time slices. 
That’s why the recurrent neural network can memorize the sequential 
information lying in the time series data. 

However, when dealing with data in a long sequence, recurrent 
neural network models can suffer from vanishing gradient problems, 
thus mitigating the ability of the model to learn long-term information 
(Pascanu et al., 2020). The Gated Recurrent Unit (GRU) is proposed by 
Cho et al. (2014) to solve the long-term dependency problem of recur-
rent neural networks. The GRU model consists of two gates, reset gate, 
and update gate. The update gate controls the previous information that 
will be carried over to the current layer, while the reset gate decides the 
amount of information to forget. The equation of the update gate zt and 
the reset gate rt are shown in Eqs. (3) and (4), respectively. The input 
vector at time t is given by xt. When xt is fed into the network unit, it is 
multiplied by the weight Wz. And ht− 1 generated from the last hidden 
layer is multiplied by its weight Uz. The two results are added together 
and a sigmoid function σ is used as the activation function to generate a 
probabilistic value between 0 and 1. So the values of update gate zt and 
the reset gate rt are generated. The weight vectors Wz, Uz, Wr, Ur are 
learned through the training process. h̃t is the memory unit that can store 

the relevant information using the reset gate rt. σ is the sigmoid function 
and ⨂ is the element-wise product function of two vectors. Wr and Ur 
are weight matrices that are learned through the process. The hidden 
layer output ht at time t is calculated by Eq. (6). These equations are 
iteratively computed from the first time slice to the last time slice, and 
finally generate the output of GRU. 

zt = σ(Wzxt + Uzht− 1) (3)  

rt = σ(Wrxt + Urht− 1) (4)  

h̃t = tanh(Wcxt + rt⨂(Uht− 1)) (5)  

ht = (1 − zt)⨂ht− 1 + zt⨂h̃t (6) 

Compared with Long Short-Term Memory (LSTM) (Hochreiter and 
Schmidhuber, 1997), the unit of the GRU is simpler to compute and 
implement (Cho et al., 2014). The training efficiency of GRU gets 
improved with the number of weights reduced. However, LSTM can 
remember longer sequences than GRU, as LSTM has a more sophisti-
cated memory cell. 

3.2. Threshold selection using extreme value theory (EVT) 

To label the pedestrians’ near-accident events, the threshold values 
of SSMs indicators need to be decided. Most of the existing studies use 
threshold values of mTTC and PET as static values, such as 3 s, 1 s, etc. 
(Ni et al., 2016; Zheng et al., 2018). Extreme Value Theory (EVT) can be 
used here for selecting the threshold values (Leadbetter et al., 2012; 
Wang et al., 2019a). EVT is a branch of statistical models that is capable 
of modeling the stochastic behaviors of extreme events. These extreme 
events usually have unusually large or small values, such as the values 
on the tail of a normal distribution. It has proven to be an effective tool 
to evaluate traffic safety by comparing model estimates of the SSMs 
indicators to the actual accident frequencies (Tarko and Songchitruksa, 
2020; Farah and Azevedo, 2017; Wang et al., 2018; Orsini et al., 2019; 
Zheng and Sayed, 2019c; Borsos et al., 2020). Multivariate EVT models 
using multiple SSMs indicators were also proposed (Fu et al., 2020). 

In this study, univariabte EVT models based on either negated PET or 
negated mTTC are used to select threshold values. EVT offers two ap-
proaches to model extreme events, the block maxima (BM) (or minima) 
approach using Generalized Extreme Value (GEV) distribution, and the 
Peak over Threshold (POT) approach using Generalized Pareto (GP) 
distribution. As the typical EVT model is used to estimate the minima of 
extreme values, here the minima of negated values of PET and mTTC 
during the pedestrian-vehicle interactions are considered. GEV models 
and GP models are used for comparison. 

Fig. 3. Spatial distributions of pedestrian-vehicle conflicts points.  
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3.3. BM approach 

For BM approach, the observations are aggregated into fixed interval 
(block). So, every interaction between a pair of pedestrian and vehicle 
can be a block, and the extremes values of PET or mTTC from each 
interaction are extracted from every interaction. Assume X is a variable 
with certain probability distribution. And x1, x2,…, xn are independent 
random observations from. Let M = max(x1, x2,…, xn). When n→∞, the 
M will converge to a General Extreme Value (GEV) distribution that best 
illustrates the probabilities of those occurrences of extreme values. The 
standard GEV distribution is as follows: 

G(x) = exp
{

−
[
1 + ε

(x − μ
σ

) ]− 1/ε
}

(7) 

With − ∞ < μ < ∞, σ > 0 and − ∞ < ε < ∞, three parameters are 
regarded as location parameter (μ), the scale parameter (σ), and the 
shape parameter (ε). With the threshold value of μ, scale parameter σμ >

0 (depending on threshold μ), and shape parameter − ∞ < ε < ∞. When 
the shape parameter ε is equal to 0, the GEV tends to a Gumbel 

distribution; when ε > 0, GEV tends to the Frechet distribution; when 
ε < 0, GEV tends to a Weibull distribution (Figs. 4 and 5). 

3.4. POT approach 

For POT approach, an event is identified as an extreme case if it 
exceeds a predefined threshold μ. With σ > 0 and − ∞ < ε < ∞, the 
threshold excesses (x − μ) will converge to a GP distribution: 

G(x) = 1 −

[

1 +

(
ε∗(x − μ)

σ

)]− 1/ε

(8) 

For POT approach, the threshold values need to be predefined. And 
two parameters, scale parameter σ and shape parameter ε are to be 
estimated. The parameter stability plots can be used to determine the 
threshold values. Fig. 6(a) shows the parameter stability plots of negated 
PET for reparameterized scale (σ∗ = σ − εμ) and shape (ε). A threshold 
value of about –7 or –5 seems appropriate, as σ∗ and ε parameters seem 
to be stable within the ranges near -–7 and –5, as the parameters are 

Fig. 4. The architecture of recurrent neural network.  

Fig. 5. Schematic of GRU unit (adapted from Cho et al. (2014)).  

Fig. 6. Parameter stability plots of PET and TTC.  

Table 2 
Modeling results for negated PET with different threshold values.  

Model Threshold (negated PET) − 7  − 6  − 5   
Sample size 73 67 34 

GEV Location parameter μ 
(Standard error)  

− 4.540 
(0.182) 

¡4.319 
(0.168) 

− 3.792 
(0.138)  

Scale parameter σ 
(Standard error)  

1.3644 
(0.133) 

1.190 
(0.124) 

0.840 
(0.104)  

Shape parameter ε 
(Standard error)  

− 0.233 
(0.097) 

¡0.171 
(0.110) 

− 0.007 
(0.139)  

Probability of accident 
(-PET > 0)

0.0017 0.0034 0.0101  

AIC (Akaike information 
criterion) 

263.425 228.786 152.340  

BIC (Bayesian 
information criterion) 

270.296 235.400 158.194  

Negative Log-Likelihood 
Value 

128.713 111.392 73.170  

Kolmogorov-Smirnov 
test p-value 

0.996 0.992 0.998 

GP Scale parameter σ 
(Standard error)  

5.186 
(0.299) 

3.656 
(0.490) 

2.741 
(0.440)  

Shape parameter ε 
(Standard error)  

− 0.828 
(0.0452) 

− 0.688 
(0.101) 

¡0.628 
(0.119)  

Probability of accident 
(-PET > 0)

0.076 0.051 0.047  

AIC (Akaike information 
criterion) 

269.362 219.566 147.529  

BIC (Bayesian 
information criterion) 

273.943 223.976 151.431  

Negative Log-Likelihood 
Value 

132.681 107.783 71.764  

Kolmogorov-Smirnov 
test p-value 

0.500 0.726 0.734  
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independent with the threshold value. For negated mTTC, as shown in 
Fig. 6(b), the parameters show steady tendencies within the range near 
–3. 

3.5. Modeling results 

In this study, the PET or mTTC values for each interaction between a 
pair of pedestrian and vehicle can be the extreme values to model. The 
threshold values of negated PET are selected within the range (–7, –5), 
such as –7, –6, –5. The threshold values of negated mTTC are selected 
from –5, –4, and –3. Both GEV and GP models are established. For GEV 
model, three parameters, μ, σ, and, are to be estimated, while for GP 
model, two parameters, σ, and ε are estimated. As shown in Eqs. (7) and 

(8), suppose x is negated PET or negated mTTC generated from 
pedestrian-vehicle interactions, the crash occurrence can be regarded as 
extreme cases, with x (− PET) = 0 or x (− mTTC) = 0 . The crash prob-
ability can be regarded as Pr(x (− PET) > 0) or Pr(x (− mTTC) > 0), 
which can be calculated using the respective model. The Kolmogor-
ov–Smirnov test is used with the null hypothesis that the true distribu-
tion of the samples is drawn from the hypothesized distribution. If the p- 
value is greater than 0.05, we cannot reject the null hypothesis. The 
modeling results are shown in Tables 2 and 3 . All statistical analysis is 
done using Maximum Likelihood Estimate (MLE) method in R (v3.5.2) 
using “ExtRemes” and “evd” packages (Smith, 1985; Team, 2013; Gil-
leland and Katz, 2016). With the AIC and BIC as evaluating metrics, four 
models are selected, as marked in bold. It should be noted that GEV 
model with threshold− PET = − 5 is not selected, as the estimated standard 
error for shape parameter ε is too large, which means the model is not 
well fitted. 

For MLE estimation, when the shape parameter ε > − 0.5, maximum 
likelihood estimators are regular with the usual asymptotic properties; 
When − 1 < ε < − 0.5, maximum likelihood estimators do not hold the 
standard asymptotic properties; When ε < − 1, maximum likelihood 
estimators are unlikely to be obtainable (Smith, 1985; Coles et al., 
2001). Thus, among the four bold marked models in Tables 2 and 3, the 
estimators from two GP models are generally not reliable, with ε = −

0.628 and ε = − 0.906. The two GEV models are selected, with the 
diagnostic plots are shown in Fig. 7. The quantile plot compares between 
the quantile of empirical data and quantile of the fitted distribution, if 
the points are close to a good linearity, the model has a good fit. The 
density plot compares between the histogram of empirical data and the 
probability density function of the fitted model. For both models, the 
blue dotted lines (fitted distributions) almost cover the histograms of the 
empirical data (black lines). As both models have good fit, the threshold 
value for PET is selected as 6 s, and the threshold value for mTTC is 
selected as 3 s. 

4. Experiments and results 

The generating rate of the trajectories from videos is 30 records per 
second. The input variables are the mobility features of the interacting 
pedestrians and vehicles, such as the traveling courses, speed, distance 
between the road user and the conflict point. The feature vectors from 
the trajectory data are used as input for the prediction of the pedestrians’ 
near-accident events. As mentioned above, the threshold values of PET 
and mTTC are 6 s and 3 s, respectively. So, the categories of the 
dependent variables are defined accordingly: when PET value is smaller 
than 6 s, and mTTC value is smaller than 3 s, the interaction is defined as 

Table 3 
Modeling results for negated mTTC with different threshold values.  

Model Threshold (negated 
mTTC) 

− 5  − 4 − 3   

Sample size 110 96 63 
GEV Location parameter μ 

(Standard error)  
− 3.016 
(-0.136) 

− 2.723 
(0.126) 

¡1.986 
(0.105)  

Scale parameter σ 
(Standard error)  

1.231 
(0.105) 

1.038 
(0.099) 

0.713 
(0.080)  

Shape parameter ε 
(Standard error)  

− 0.341 
(0.093) 

− 0.287 
(0.112) 

¡0.271 
(0.125)  

Probability of accident 
(-mTTC > 0)

0.010 0.0076 0.0056  

AIC (Akaike information 
criterion) 

358.857 287.411 144.132  

BIC (Bayesian 
information criterion) 

366.959 295.105 150.562  

Negative Log-Likelihood 
Value 

176.429 140.706 69.066  

Kolmogorov-Smirnov 
test p-value 

0.754 0.677 0.836 

GP Scale parameter σ 
(Standard error)  

4.694 (2e- 
8) 

3.073 
(0.288) 

2.475 
(0.059)  

Shape parameter ε 
(Standard error)  

− 0.994 (2e- 
8) 

− 0.820 
(0.079) 

¡0.906 
(0.018)  

Probability of accident 
(-m TTC > 0)

0.057 0.037 0.077  

AIC (Akaike information 
criterion) 

345.640 254.126 130.052  

BIC (Bayesian 
information criterion) 

351.040 259.254 134.339  

Negative Log-Likelihood 
Value 

170.820 125.063 63.026  

Kolmogorov-Smirnov 
test p-value 

0.641 0.993 0.940  

Fig. 7. Diagnostic plots for selected GEV models.  
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“serious conflict”; when one of the indicators is smaller than the 
threshold value, the interaction is defined as “slight conflict”; when 
neither of the two indicators is smaller than the threshold values, the 
case is regarded as “safe”. The descriptive statistics of the variables used 
are listed in Table 4. 

The pedestrians’ and vehicles’ features before reaching the conflict 
points are generated to feed into the model. There are 25,258 records in 
the data set, with a ratio of 5.1:1.6:1 between the targeted classes “safe”, 
“slight conflict”, and “serious conflict”. Eighty percent of the data are 
used as the training data set, and twenty percent of the data is used as the 
test data set. An over-sampling method SMOTE (Synthetic Minority 
Over-Sampling Technique, Chawla et al. (2002)) is used on the training 
data set to increase the number of records for the two minority classes, i. 
e., “slight conflict”, and “serious conflict”. SMOTE is a popular 
over-sampling method, which can generate new minority class records 
by interpolating between several minority class examples that lie 
together. The ratio of the three classes in the training data set after using 
SMOTE is 1:1:1, while the test data include only the original records. 

The proposed neural network, GRU model consists of two GRU 
layers, one dense layer and a dropout layer. The GRU layers are set to 
learn the sequential information from the data, and dropout layer is used 
to avoid overfitting. To better learn sequential data, the GRU layers use 
feature vectors that are stacked from the previous time slices as input. 
Thus, the input data of the first layer of the GRU model is in three di-
mensions (number of samples, number of time slices (= 3), number of 
independent variables (= 6)). 

The proposed GRU model is well trained before getting overfitted. 
Hyperparameters of the model mainly include batch size, unit number, 
the learning rate, and decay value of the optimization function (“Adam” 
optimizer (Kingma and Ba, 2014)). The definitions of these hyper-
parameters are listed as below:  

(1) Batch size: the number of samples used for each iteration during 
the training process.  

(2) Unit number: the number of units for each layer in the neural 
network. A larger unit number will result in a faster learning 
process.  

(3) Learning rate: learning rate controls how quick in updating the 
weights at each iteration in the optimization algorithm. A larger 
learning rate makes the model to learn faster. But a too large 
learning rate will result in an unstable learning process.  

(4) Decay value: decay is used to adjust the learning rate in the 
optimization algorithm. It’s a parameter used to avoid overfitting 
by taking a ratio of the learning rate.  

(5) Epoch number: the number of training epochs. The more epochs, 
the greater capacity the model has. However, a too large epoch 
number will lead to overfitting, which will mitigate the perfor-
mance of the model. 

The most appropriate hyperparameters need to be decided for a 
neural network, to achieve the best performance. As shown in Table 5, 
the tuning range is the range out of which the most appropriate value is 
selected. After comparing the model’s performance under different 
hyperparameter values, the batch size is selected as 100, and the unit 
number within the GRU memory unit is 128, etc. The epoch number for 
the training process is 26. 

4.1. Evaluating metrics and results 

The evaluating metrics, such as accuracy, precision, recall, and 
specificity are illustrated as below:  

(1) Accuracy: the f fraction of the correctly classified samples among 
all the samples.  

(2) Precision: the fraction of correctly classified samples among the 
samples classified as positive.  

(3) Recall: or sensitivity, the proportion of actual positive samples 
that are classified correctly.  

(4) Specificity: the proportion of actual negative samples that are 
correctly classified..  

(5) False alarm rate (FAR): one minus specificity, the proportion of 
the actual negative samples that are classified wrongly.  

(6) AUC: Area Under the Curve. The ROC curve (Receiver Operating 
Characteristic curve) is used as a comprehensive metric to eval-
uate the model’s performance. This curve plots two parameters, 
recall and false alarm rate (FAR), at different classification 
thresholds. The AUC value, which ranges from 0.5 to 1, is the area 
under the ROC curve. 

The evaluating metrics are usually computed from the confusion 
matrix, as shown in Table 6. For a binary classification problem, the 
samples can be labeled as positive and negative, so the metrics can be 
computed as from Eqs. (9)–(13). However, in this study, the samples are 
in three classes, so the average values of the metrics calculated from 
each class are calculated and used for evaluation. 

Accuracy =
TP + TN

TP + FP + FN + TN
(9)  

Precision =
TP

TP + FP
(10)  

Recall =
TP

TP + FN
(11)  

Specificity =
TN

TN + FP
(12)  

FAR (false alarm rate) = 1 − specificity =
FP

TN + FP
(13) 

Table 4 
Descriptive statistics of variables.  

Variable Description Range Unit 

Course (ped) The traveling directions (10.95, 347.31) degree 
Course (veh) The traveling directions (0.19, 359.99) degree 
Speed (ped) The traveling speed (0, 6.39) ft./s 
Speed (veh) The traveling speed (0, 50.83) ft./s 
Distance to 

conflict point 
(ped) 

The distance between the 
pedestrian and conflict 
point 

(0, 154.73) ft. 

Distance to 
conflict point 
(veh) 

The distance between the 
vehicle and conflict point 

(0, 220.34) ft. 

Near-accident 
events* 

Category of events (Safe; 
Slight conflict; Series 
conflict) 

(safe: 16,799; slight: 
5179; serious: 3280) 

– 

Note: *Dependent predictor. 

Table 5 
Hyperparameter tuning.  

Hyperparameter Tuning range Selected 

Batch size 100, 500, 1000 100 
Unit number 256, 128, 64 128 
Learning rate 0.05, 0.01, 0.005 0.01 
Decay value 0, 0.001, 0.005 0  

Table 6 
Confusion matrix for binary classification.  

Actual Classified 

Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN)  
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Compared with the LSTM model with the same architecture, i.e., two 
stacked LSTM layers, a dense layer, and a dropout layer, with “Adam” 
optimizer, the GRU model performs better. This may be due to the 
reason that the structure of the data set is not very complicated. Besides, 
a machine learning model, SVM (Support Vector Machine), with an “rbf” 
kernel is used for comparison. The modeling results on the test data set 
are shown in Table 7. It can be found that GRU achieves the best per-
formance with the accuracy of 0.878 and AUC value as 0.865. The ac-
curacy values are validated using the k-fold cross validation (k equals 
ten here). The data set is shuffled and split into ten groups, with one 
group as the validation set and the other groups as the training data set. 
The process is repeated until every group has acted as the validation set. 
Taking the GRU model for an instance, the accuracy value is ranging 
from 0.8732 to 0.8828 across all the ten groups (the whole data set). 

5. Conclusions and discussions 

This paper uses a GRU model to predict the pedestrians’ near- 
accident events at the signalized intersections. With PET and mTTC in-
dicators generated from videos, the EVT approach are used to fit the 
distributions of PET and mTTC values during the pedestrian-vehicle 
interactions. With the selected threshold values, the near-accident 
events of pedestrians are classified into three severity categories. A 
GRU model is further used to predict the pedestrians’ near-accident 
events, reaching an accuracy of 0.878 and the AUC value of 0.865. 
The proposed model can be used to warn drivers of the potentially 
dangerous events involving pedestrians and to be implemented in the 
Connected Vehicle (CV) environment. 

Among the contributions of this study are that two SSMs indicators 
are combined to classify the pedestrians’ near-accident events. And the 
most appropriate threshold values are selected using GEV (General 
Extreme Value) distribution and Generalized Pareto (GP) distribution. A 
recurrent neural network, GRU, is used to better utilize information 
lying in the time-series data. Compared with LSTM, GRU is simpler and 
more efficient, but with better performance on this data set. However, 
the limitation of the study is that two time-based SSM indicators (PET 
and minimum TTC) were used, without using any speed-based SSM in-
dicators such as Delta-V (Shelby, 2020). In future work, video data from 
more intersections, and more safety indicators can be used to test the 
robustness of the proposed model. 
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