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Prediction of pedestrian-vehicle conflicts at signalized intersections based 
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A B S T R A C T   

Pedestrian protection is an important component of road safety. Intersections are dangerous locations for pe-
destrians with mixed traffic. This paper aims to predict potential traffic conflicts between pedestrians and ve-
hicles at signalized intersections. Using detection and tracking techniques in computer vision, pedestrians’ and 
vehicles’ features are extracted from video data. An LSTM (Long Short-term Memory) neural network is proposed 
to predict the pedestrian-vehicle conflicts 2 s ahead. The established model reaches an accuracy of 88.5 % at one 
signalized intersection. It is further tested at a new intersection, reaching the accuracy of 84.9 %, while the new 
data merely takes up 30 % of the training data set. This indicates that the proposed model is promising to be 
implemented at different locations. Moreover, the proposed model can also be applied to develop collision 
warning systems under the Connected Vehicles’ environment.   

1. Introduction 

Pedestrians are regarded as vulnerable road users (VRUs). Each year, 
thousands of pedestrian and cyclist deaths are caused by traffic colli-
sions, which take up 16 % of the total road fatalities and injuries in the 
U.S. (FHWA, 2018). In 2018, there were 6283 pedestrian deaths, ranked 
the highest in the last three decades. Among them, 26 % happened from 
6 pm and 9 pm (NHTSA, 2019a). The intersections are one of the 
dangerous road locations with relatively high pedestrian volume, and 
mixed traffic volume of pedestrians and vehicles. Annually, approxi-
mately 18 % of pedestrian fatalities happened at the intersections in the 
U.S. (NHTSA, 2019b). To further improve intersection safety, studies 
have been carried out to investigate collision-related variables (Gårder, 
1989; Lee and Abdel-Aty, 2005). With more safety countermeasures to 
be implemented, it is also important to model and predict potential 
collisions in advance to warn drivers, with the development of Con-
nected Vehicle (CV) technologies. 

Traditional traffic safety studies mainly used crash data. However, 
crash data were not usually complete or accurate, and sometimes failed 
to reveal the true contributing factors of collisions (Ismail et al., 2009). 
Surrogate Safety Measures (SSMs) were proposed (Tarko et al., 2009) 
and used to measure collision risks (Fu et al., 2018; Khosravi et al., 2018; 
Wu et al., 2019). Indicators of SSMs included Post-Encroachment Time 

(PET, Cooper (1984)), Time to Collision (TTC, Hayward (1972)), Gap 
Time (GT, Vogel (2002)), etc. PET was regarded as an appropriate in-
dicator to capture conflicts between pedestrians and vehicles (Ismail 
et al., 2009). Given a predetermined threshold, small PET values could 
denote the proximity of collisions (Cooper, 1984; Ismail et al., 2009; 
Mizoguchi et al., 2017). 

Previous studies investigated the factors contributing to pedestrian- 
vehicle conflicts. Environmental factors, such as the signal timing 
(Gårder, 1989) and geometric design of the intersections (Gårder, 1989; 
Salamati et al., 2011), could influence pedestrian-vehicle conflicts. Chen 
et al. (2017) conducted safety evaluation on an intersection and found 
more severe conflicts (small PET values) outside the crosswalks. Besides, 
the drivers’ yielding behaviors (Fu et al., 2018), pedestrians’ acceptable 
gaps, and pedestrians’ yielding behaviors (Tageldin et al., 2017) were 
found to be significant factors for pedestrian safety at the intersections. 

Pedestrians’ violation behaviors were found to be significant for 
pedestrian-vehicle conflicts at the signalized intersections, as violating 
pedestrians were exposed to motorized traffic without the protection of 
traffic signals. For example, the pedestrians’ spatial violations, i.e., 
crossing outside the crosswalks, were found to be positively correlated 
with the number of traffic conflicts (Zaki et al., 2013). In addition, pe-
destrians’ characteristics affected crossing behaviors, which could in-
crease the irregularities of their motions. For example, pedestrians 
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walking in groups had lower walking velocities and higher commonality 
(Hediyeh et al., 2014). And females were found to walk slower than 
males (Montufar et al., 2007). More emphasis should be placed on 
integrating pedestrians’ characteristics into the pedestrian crossing 
safety. 

Compared with traditional data sources, including radar, loop de-
tector, and Bluetooth sensors, video data could offer a microscopic view 
for pedestrian safety analysis (Wang et al., 2012; Ka et al., 2019; Wu 
et al., 2019; Zhang et al., 2020). Wang et al. (2012) developed a 
smartphone application to alarm pedestrians. It could recognize vehicles 
from both the front view and the back view. But as the application used 
embedded cameras of smartphones, it could not be used if the smart-
phone was in the pocket or facing the ground. Ka et al. (2019) predicted 
pedestrians’ red- light violations based on the pedestrians’ characteris-
tics (age, gender, head orientation, etc), and send warnings to drivers. 
These studies offered new insights into improving pedestrian safety 
using video data. However, the pedestrians-involved conflicts were so-
phisticated, taking into consideration various kinds of 
pedestrian-vehicle interactions (Schneemann and Gohl, 2016; Yue et al., 
2020). For example, pedestrians were found to take different evasive 
actions when approaching vehicles had different velocities, and either 
party could make abrupt movements during an interaction process (Ni 
et al., 2016). 

To summarize, the research gap lies in modeling pedestrian safety 
based on the features of vehicles and pedestrians throughout the 
pedestrian-vehicle interactions. To fill the gap, the trajectories gener-
ated from videos can bring more possibilities to model and predict the 
occurrences of pedestrian-vehicle conflicts. 

To better handle time series data in the transportation field, neural 
networks have been successfully applied (Manh and Alaghband, 2018; 
Cai et al., 2019; Du et al., 2019; Gong et al., 2019). And LSTM (Long 
Short-term Memory) neural network (Hochreiter and Schmidhuber, 
1997), as an advanced Recurrent Neural Network (RNN), could connect 
the information between the last time window to the next time window. 
Thus, it is more effective at capturing the sequential information lying in 
the time series data (Altché and Fortelle, 2017; Yuan et al., 2019; Li 
et al., 2020). LSTM neural network proved to be effective in predicting 
pedestrians’ motions such as trajectory predictions (Manh and Alagh-
band, 2018;), and predictions of pedestrians’ interactions in crowded 
spaces (Alahi et al., 2016). It can be better used to predict the occur-
rences of pedestrian-vehicle conflicts using trajectory data generated 
from videos. 

Based on the above discussion, this study is intended to predict the 
pedestrian-vehicle conflicts at signalized crosswalks using an LSTM 
neural network. With video data generated from real traffic scenes, 
pedestrian-vehicle interactions are collected and divided into three 
categories, safe interactions, slight conflicts, and severe conflicts. Pe-
destrians’ characteristics are generated using computer vision 

techniques. The LSTM model is established and well trained. The 
experiment result at the original intersection shows that the LSTM 
model achieves the accuracy of 88.5 %. The external experiment result 
at another intersection shows that the model achieves the accuracy of 
84.9 % (around 85 %), when merely 30 % external data are fed during 
the training process. This indicates the model is promising to generalize 
well at different locations. In addition, it can be further implemented in 
the collision warning systems under the Connected Vehicle (CV) 
environment. 

2. Data collection 

To analyze pedestrians’ crossing behaviors at intersections, video 
data from two intersections (Intersection 1: (latitude: 28.5963094, 
longitude: − 81.1993496); Intersection 2: (latitude: 28.606160, longi-
tude: − 81.197373)) were collected, as shown in Fig. 1. The traffic vol-
umes at the two intersections were around 200veh/h and 150veh/h, 
respectively. The videos were collected on different days using GOPRO 
HERO 7 camera. Data from both intersections (marked in shadow areas) 
were collected during daytime (16:00− 17:00) and evening 
(18:00− 19:00, with street light) on sunny clear weekdays in October 
2019. All video data are of good quality to generate the trajectories of 
road users. 

2.1. Evaluation of the crosswalk safety at the studied site 

Post-Encroachment Time (PET) was defined as the time difference 
between the moment when the first road user left the potential conflict 
zone and the moment when the second user reached it (Allen et al., 
1978). This was an indicator typically used for denoting pedestrian 
safety in previous studies (Ismail et al., 2009; ; Wu et al., 2019), as it 
could measure the proximity of the road users to analyze crossing con-
flicts. As shown in Fig. 2(a), t1 was the moment when the pedestrian left 
the conflict zone, and t2 was the moment when the vehicle reached the 
same zone. The Fig. 2(b) shows the converse case when the vehicle left 
first and the pedestrian reached. And the time difference between t2 and 
t1 was defined as PET, as shown in Eq. 1. According to the literature 
(Radwan et al., 2016; Kathuria and Vedagiri, 2020), if the PET value 
during the interaction was smaller than 3 s, the situation was regarded as 
severe conflict. If the PET value was between 3 s and 6 s, the situation 
was regarded as a slight conflict. If the PET value was larger than 6 s, the 
situation was regarded as a safe interaction. 

PET = t2 − t1 (1)  

t2 :themomentwhenthevehicle(pedestrian)reachedtheareaof potentialcollision  

Fig. 1. The studied locations.  
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t1 : the moment when the pedestrian(vehicle) left the area of potential collision 

Pedestrian-vehicle conflicts were manually collected to ensure 
analysis accuracy. At the first crosswalk, 334 pedestrians and 69 traffic 
conflicts were collected. Forty happened during daytime, and 29 
happened during evening. At the second crosswalk, videos of 254 pe-
destrians and 62 traffic conflicts were collected. Among them, 48 
happened during daytime and 14 happened during evening. The details 
can be found in Fig. 3. 

2.2. Video processing 

To generate the trajectories of pedestrians and vehicles, computer 
vision techniques including object detection, object tracking, and 
perspective transformation were used. 

2.2.1. Object detection 
YOLO (You only look once) is a real-time object detection model first 

proposed by Redmon et al. (2016). It could apply a single neural 
network to the full image, dividing different areas (anchor boxes) and 
classifying the objects in these areas at the same time. This characteristic 
made it more efficient to use, compared with two-stage models such as 
R-CNN (Girshick, 2015; Ren et al., 2015). YOLOv3 model (Redmon and 
Farhadi, 2018) improved the original model by using multi-scale im-
ages, data augmentation, and batch normalization during the training 
procedure. YOLOv3 proved to be effective on the COCO dataset (Lin 
et al., 2014), a standardized large-scale data set for evaluating the per-
formance of object detection algorithms. YOLOv3 has been used to 
detect road users from traffic video data in previous studies (Jana et al., 
2018; Lin and Sun, 2018). 

2.2.2. Object tracking 
To follow the movements of multiple road users appearing in the 

scene, the Deep SORT model (Wojke et al., 2017; Wojke and Bewley, 
2018; Qidian et al., 2020) was used. The model assigned unique tracker 
IDs to each pedestrian and each vehicle recognized by the detection 
model, and followed their movements. As shown in Fig. 4, the blue 
bounding boxes were generated from the YOLOv3 model, and the white 
bounding boxes were from the Deep SORT model. The green numbers 
were the tracker IDs for pedestrians, and the white numbers were the 
tracker IDs for vehicles. 

Deep SORT was evaluated on the MOT16 Challenge benchmark 
(Milan et al., 2016), a standardized benchmark for evaluating the per-
formance of different Multiple Object Tracking algorithms. Deep SORT 
outperformed previous models from the perspectives of MOTA score 
(Multi-object tracking accuracy), and reducing FN (false negatives), etc 
(Wojke et al., 2017). The Deep SORT had a few applications in trans-
portation field (Arvind et al., 2019; Hou et al., 2019). 

2.2.3. Perspective transformation 
The purpose of the perspective transformation was to create a 

mapping from the image plane to the world plane. A homograph matrix 
h was used to transform the coordinates extracted from videos to the 
world coordinates. Matrix h was composed of nine values from h1 to h9. 
As shown in Eq. 2, the points correspondences from videos and Google 

Fig. 2. Illustration of PET calculation.  

Fig. 3. Distribution of small PET values.  
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Maps©, i.e., (ui, vi), and (Xi,Yi), formed matrix A. The Singular Value 
Decomposition (SVD) could be used to solve Eq. 2 with of h9 = 1 
(Naphade et al., 2019; Španhel et al., 2019; Tang et al., 2019). After 
generating matrix h, the image coordinates could be converted to the 
world coordinates through the inverse matrix of h, thus generating the 
correct world coordinates of road users. 
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(ui, vi) : coordinate of each point on image plane  

(Xi,Yi) : coordinate of each point on world plane  

h = [h1, h2, h3, h4, h5, h6, h7, h8, h9]
T 

From this step, location information of pedestrians and vehicles was 
generated at the frequency of 60 Hz. The trajectories of road users 
(pedestrians and vehicles) were generated from videos, as shown in 
Fig. 5. Different road users are marked with different colors. 

Another transformation procedure was conducted to create a generic 
coordinate system for different intersections. As shown in Eq. 3, the 
matrix M is used to convert world coordinates (Xi,Yi) to the scaled co-
ordinates 

(
Xi scale,Yi scale

)
according to the scale of the intersections. 

Matrix M could be calculated using the four-points perspective trans-
formation method offered by OpenCV packages (Szeliski, 2010). And the 
four points were the four corners at this intersection, as shown in Fig. 6. 
Basically, the camera covers the areas within the boundary formed by 
the four points. Take the top-left point for example, the world coordinate 
of this point is (X1,Y1) = (− 81.1993496, 28.5963094), and the scaled 

coordinate is 
(
X1 scale,Y1 scale

)
= (0, 58.94), as the height of the rect-

angle area is 58.94 ft. Though this step, the world coordinates were 
converted to the scaled coordinates, and then normalized to feed into the 
model. This ensured that the model can be further implemented to more 
intersections with different geometric designs. 
⎛

⎝
Xi scale
Yi scale

1

⎞

⎠ = M

⎛

⎝
Xi
Yi
1

⎞

⎠ (3)  

2.3. Variables description 

From the above procedures, variables obtained from both in-
tersections are listed in Table 1. The independent variables were 
composed of pedestrians’ features, such as gender (male/female), 

pedestrian coordinates 
(

Xped
i , Yped

i

)
, walking directions (towards/away 

from camera), whether the pedestrians crossed during the red light (yes/ 

no), as well as vehicle coordinates 
(

Xveh
j ,Xveh

j

)
. The variables except for 

pedestrians’ genders and pedestrians crossed during red light were 
automatically generated from videos. The pedestrians’ and vehicles’ 
coordinates were preprocessed to feed into the model, as mentioned 
above. The dependent variables in this study were traffic conflicts be-
tween pedestrians and vehicles, which were divided into three cate-
gories, i.e., severe conflicts (PET ≤ 3s), slight conflicts (3s < PET ≤ 6s), 
and no conflicts/safe interactions (PET > 6s). 

For predicting purpose, also to implement the system prototype 
under the CV environment, suppose the driver can get warning for 
pedestrian θ units of time ahead. Considering drivers’ reaction time, θ 
was taken as 2 s (Wilson et al., 1997; Obeid et al., 2017). The trajectories 
of pedestrians and vehicles were extracted 2 s before reaching the 
conflict zones. 

Fig. 4. Object detection and object tracking at the studied area.  

Fig. 5. Trajectories of pedestrians & vehicles at 1st location on Google Maps.  
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3. Methodologies 

As trajectory data are time series data, an LSTM neural network 
(Hochreiter and Schmidhuber, 1997) model can better capture the 
temporal relationships lying in the data. LSTM neural network is an 
advanced Recurrent Neural Network (RNN). As Recurrent Neural 

Networks are less effective to learn long-term dependency from time 
series data (Graves et al., 2013), the LSTM neural network is proposed to 
solve this problem. 

An LSTM neural network model is usually composed of the input 
layer, multiple hidden layers, and the output layer. The advantage of the 
LSTM model is the design of its units inside the hidden layer. An LSTM 
unit, with the unique memory cell, can remember historical information 
lying in the sequence data, such as speech (temporal sequence) or image 
data (spatial sequence). The illustration of an LSTM unit is shown in 
Fig. 7. Given the time window t, the unit is composed of an input gate it, 
a forget gate ft, an output gate ot . These three gates control the infor-
mation flow in the unit. The it , ft, and ot are calculated using weight 
matrices W, the input sequence xt, and the last layer output ht− 1. ct is the 
cell activation vector, which is formed by two elementwise products of 
the vectors. It is also referred to as the cell state, containing the infor-
mation which the unit is going to store. The output ht− 1, and the cell 
state ct− 1 from the last layer are used as the input for the current layer, 
which is similar to the normal recurrent neural networks. The input 
sequence xt is computed by Eqs. 4–8 to generate the hidden layer output 
ht, which is a vector of probabilities. So, the output sequence yt for the 
neural network is calculated iteratively from hidden layer output ht , as 
shown in Eq. 9. 

(adapted from (Graves et al., 2013; Kang et al., 2017)). 

it = σ(Wxixt + Whiht− 1 + Wicct− 1 + bi) (4)  

ft = σ(Wfxxt + Whf ht− 1 + Wcf ct− 1 + bf ) (5) 

Fig. 6. Transformation from world coordinates to scaled coordinates*.  

Table 1 
Summary of variable descriptive statistics.  

Variable Description Distribution 

Gender “male” or “female” (“male” = 389, “female” = 199) 
Crossed during red 

light 
“yes” or “no” (“yes” = 182, “no” = 406) 

Walking directions “towards” or “away” (“towards” = 305, “away” = 283) 
Pedestrian locations 

Xped
i  

Coordinates (0, 1)

Pedestrian 
location Yped

i  

Coordinates (0, 1)

Vehicle locations 
Xveh

j  

Coordinates (0, 1)

Vehicle locations 
Yveh

j  

Coordinates (0, 1)

Traffic conflicts “no”, “slight”, 
“severe” 

(“no” ¼ 457, “slight” ¼ 85, 
“severe” ¼ 46) 

*Note: “gender” and “crossed during red light” were manually labeled. Bold 
marked is the dependent variable. 

Fig. 7. Schematic of LSTM unit.  
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ot = σ(Wxoxt + Whoht− 1 + Wcoct + bo) (6)  

(7)  

(8)  

yt = Whyht + by (9) 

σ: logistics sigmoid function 
: elementwise product of the vectors 

∅: activation function tanh 
The model architecture used in this study is shown in Fig. 8. The 

model contains two stacked LSTM layers and a dense layer. Features 
from four time slices are fed into the model as the input of the next layer. 
The output neurons denote the probabilities that one record is classified 
as each of the targeted categories. Softmax function is the activation 
function. Adam (Kingma and Ba, 2014) is the optimization function. The 
decay value for the optimization function is set to be 0.1 to avoid 
overfitting. The model is implemented in the Keras framework (Chollet, 
2015). 

4. Experiment and results 

The proposed model is first trained and tested using data from one 
intersection (Fig. 1(a)). There are 35,647 records in the data set after 
slicing and stacking the features from different time slices, with a ratio of 

28:2:1 between the targeted classes “safe interaction”, “slight conflicts”, 
and “severe conflicts”. Eighty percent of the data are used as the training 
data set, and twenty percent of the data are used as the test data set. An 
over-sampling method SMOTE (Synthetic Minority Over-Sampling 
Technique, Chawla et al. (2002)) is used on the training data set to in-
crease the number of records for the two minority classes, i.e., “slight 
conflicts”, and “severe conflicts”. SMOTE is a popular over-sampling 
method, which can generate new minority class records by interpo-
lating between several minority class examples that lie together. It 
should be noted that SMOTE is only applied to the training data set, 
while the test data set still uses original records. 

The proposed LSTM model is well trained before getting overfitted. 
As shown in Table 2, the batch size is selected as 1000, the learning rate 
is 0.005, and the unit number in the LSTM layer is 64. The epoch number 
for the training process is 30. 

Fig. 8. Model architecture.  

Table 2 
Hyperparameters.  

Hyperparameter Tuning range Selected value 

Batch size 100, 500, 1000, 5000 1000 
Learning rate 0.001, 0.005, 0.01 0.005 
LSTM unit number 32, 64, 128 64  
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4.1. Evaluating metrics 

The diagram for evaluation metrics calculation is shown in Table 3. 
TP (true positive) means the number of actual positive samples that are 
correctly classified. FP (false positive) means the number of actual 
negative samples that are wrongly classified. FN (false negative) is the 
number of actual negative samples that are wrongly classified. TN (true 
negative) is the number of actual negative samples that are correctly 
classified. 

Using these four values, the equations of calculating the metrics are 
listed in Eqs. 10–13. Precision, also called positive predictive value 
(PPV), is the ratio of actual positive samples to the classified positive 
samples. Recall, also called sensitivity, is the proportion of the actual 
positive samples that are correctly classified. F1 score is an integrated 
metric taking into consideration both precision value and recall value. 
Accuracy is defined as the ratio of the correctly classified samples in the 
whole data set, taking into consideration both positive samples and 
negative samples. 

Precision =
TP

TP + FP
(10)  

Recall =
TP

TP + FN
(11)  

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(12)  

Accuracy =
TP + TN

TP + FP + FN + TN
(13)  

4.2. Experiment results 

The experiment is first carried out using the data from the first 
intersection, which is also regarded as internal testing. For comparison, 
a machine learning model, Support Vector Machine (SVM) (Cortes and 
Vapnik, 1995) and a simple Deep Neural Network (DNN) are also used. 
The SVM model is implemented using the function “SVC” with a linear 
kernel from the Scikit-learn package (Pedregosa et al., 2011). DNN 
model is also referred to as Artificial Neural Network (ANN), with 
multiple layers used to generate the output from the input data. The 
DNN model here is composed of three dense layers, which are the main 
differences with the LSTM model. The dense layer is not capable of 
learning sequential information. The optimization function and the 
activation function are the same as the LSTM model. The model is well 
tuned to reach the best result. 

Among the three models, the LSTM model achieves the best results 
from the perspectives of all evaluation metrics. As shown in Table 4, the 
SVM model reaches the accuracy of 56.1 %, and the DNN model is 76.6 
%. The LSTM model achieves the precision of 88.9 % over both classes. 
And the recall value is 88.2 %, the F1 score is 88.5 %. The model ach-
ieves an overall accuracy of 88.5 % on the test data set. 

4.3. Experiment results (external testing) 

The data set collected at the second intersection (shown in Fig. 1(b)) 
is regarded as external data set, which contains 20,335 records in total, 
with the ratio at around 22:4:1 between three targeted classes. SMOTE is 
used to balance different classes. The objective of the external testing is 

to prove that the LSTM model can be implemented at different locations. 
The idea is to further train the model by gradually increasing more 

external data in the training set, while keeping the original training data 
from the 1st intersection. As shown in Table 5, the first column shows 
the ratios of external data in the training data set, and the second column 
shows the experiment results on the external test set. When there are no 
external data in the training data set, the previous model achieves the 
precision rate of 62.0 %, the recall rate of 61.6 %, and the overall ac-
curacy of 61.6 %. With more external data used in the training process, 
the model’s performance at the external location gets improved as well. 
When the external data take up 10 % of the training data set, the model 
achieves the precision of 79.4 % and the accuracy of 75.9 %. When the 
external data take up 30 % of the training data set, the model achieves 
the accuracy of 84.9 %. If the external data continue to increase, up to 50 
% of the training data set, the model achieves performances that are 
similar to the original intersection, from the perspective of accuracy. 
Models are well trained before getting overfitted. And each model 
achieves an accuracy of around 88.5 % on the test data set of the first 
intersection (the same result as internal testing). In other words, the 
model’s performance doesn’t get worse at the original intersection, with 
the external data increasing in the training data set. 

The experiment results indicate that when there are two in-
tersections, the ratio of 30 % of external data will improve the model’s 
accuracy to 84.9 % (around 85 %) on the test data set of the new loca-
tion, which can be seen as an ideal accuracy rate. This indicates that the 
model can be further trained and implemented with more external data, 
to be implemented at different intersections. 

5. Conclusion and discussion 

In this paper, an LSTM neural network model is employed to predict 
the pedestrians’ safety situations, denoting by different PET values. 
Based on detection and tracking techniques in computer vision, the 
characteristics of pedestrians and vehicles are fed into the model. The 
proposed model achieves the accuracy of 88.5 % at one signalized 
intersection. The external test indicates that including 30 % new data 
significantly improves the model performance at a different location to 
an ideal accuracy (84.9 %). The results imply that the characteristics 
during pedestrian-vehicle interaction processes will reflect the poten-
tially dangerous situations of pedestrians. Moreover, the model can be 
further trained and implemented at different locations with a smaller 
size of new data set required. 

Different from traditional studies, this paper predicts the pedes-
trians’ conflicts in time series before the pedestrians and vehicles reach 

Table 3 
Confusion matrix.   

Actual value 

Classified value Positive Negative 
Positive TP (true positive) FP (false positive) 
Negative FN (false negative) TN (true negative)  

Table 4 
Internal testing result.   

Training set Test set 

Model Accuracy Precision Recall F1 score Accuracy 
SVM 0.670 0.831 0.561 0.670 0.561 
DNN 0.800 0.861 0.766 0.811 0.766 
LSTM 0.889 0.889 0.882 0.885 0.885  

Table 5 
External testing result.  

Ratio of external data in the training 
data set 

Prediction result on the test set (external 
data)  

Precision Recall F1 
score 

Accuracy 

0 % 0.620 0.616 0.618 0.616 
10 % 0.794 0.759 0.776 0.759 
20 % 0.800 0.797 0.798 0.803 
30 % 0.815 0.806 0.810 0.849 
40 % 0.819 0.817 0.818 0.854 
50 % 0.883 0.883 0.883 0.885  
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the conflict zones. And different geometric designs of intersections are 
taken into considerations by transforming the location coordinates. 
More research can be further conducted to implement the model in the 
field experiments with Connected Vehicles’ technologies, to better warn 
drivers. 

The limitation of the study is only the PET indicator is used. As 
various indicators of SSMs have different features, other indicators such 
as TTC, GT, or the integrations of multiple indicators, can also be used to 
identify the dangerous situations of pedestrians. 
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