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Abstract
Traffic violations of pedestrians at intersections are major causes of road crashes involving pedestrians, especially red-light
crossing behaviors. To predict the pedestrians’ red-light crossing intentions, video data from real traffic scenes are collected.
Using detection and tracking techniques in computer vision, some pedestrians’ characteristics, including location information,
are generated. A long short-term memory neural network is established and trained to predict pedestrians’ red-light crossing
intentions. The experimental results show that the model has an accuracy rate of 91.6% based on internal testing at one sig-
nalized crosswalk. This model can be further implemented in the vehicle-to-infrastructure communication environment and
prevent crashes because of the pedestrians’ red-light crossing behaviors.

Pedestrian safety plays an important role in traffic safety.
Each year, approximately 5,000 pedestrian deaths are
caused by traffic accidents in the U.S.A. (1). Furthermore,
pedestrians’ violations at intersections, such as crossing
outside of crosswalks and crossing during red-light peri-
ods, can be major causes of such accidents (2).

To investigate pedestrians’ jaywalking behaviors, espe-
cially red-light crossing, behavior models such as the the-
ory of planned behavior (TPB) model and statistical
models were used (3–6). It was found that pedestrians’
characteristics, such as age, gender, grouping behavior,
pedestrian volume, and safety awareness were significant
factors on pedestrians’ red-light violations (7, 8). At sig-
nalized intersections, pedestrians’ time of arrival, signal
design, and types of land use at the crossing intersections,
could influence pedestrians’ waiting time, thus influencing
pedestrians’ crossing attempts (5, 9). The pedestrians’
crossing intention involving red-light violation was highly
time-dependent. The intention of violation increased
when the pedestrians’ waiting time lasted longer (7, 10).

With various built-in sensors, the advanced driver
assistance system (ADAS) could alert drivers of pedes-
trians’ unexpected dangerous crossing behaviors. Some
studies used on-board sensors to estimate and predict
pedestrians’ paths (11, 12). Keller and Gavrila used
Kalman Filter and its extension to predict whether the
pedestrian would cross the street for a proactive pedes-
trians’ safety system (11). The error of prediction result

was 10–50 cm at the prediction time horizon of 0–0.77 s.
However, on-board sensors have limited field-of-view
(FOV) (13). It could be too late for drivers to take eva-
sive actions when the pedestrian was already in the FOV.
Thus, more work should be done to capture and predict
pedestrians’ jaywalking intentions (14, 15).

As there are many irregularities in pedestrians’ move-
ments, video data could be employed to capture and ana-
lyze pedestrians’ characteristics from a microscopic view.
Video data were used in previous work to investigate
pedestrians’ crossing behaviors (2, 6, 7, 11, 15, 16). Zaki
and Sayed investigated pedestrians’ spatial traffic viola-
tions, that is, the pedestrian was not walking in the desig-
nated region, and temporal violations, that is, the
pedestrian crossed during an improper traffic signal
phase (2). It was found that pedestrians with illegal
crossing behavior had higher velocity and caused more
traffic conflicts. Ka et al. predicted pedestrians’ crossing
intentions during the red-light periods based on their
characteristics (age, gender, head orientation, etc.) (15).
Using Region-based Convolutional Neural Network (R-
CNN) object detection and Simple Online and Realtime
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Tracking (SORT) tracking technique, the system could
identify potential critical events from videos caused by
the pedestrians’ red-light crossing behaviors, and alert
right-turn vehicles (17).

With the development of deep learning, it could be
used to better solve transportation problems. Traditional
deep learning neural networks were less effective at cap-
turing the relationships in sequential data for future pre-
dictions. Thus, recurrent neural network (RNN) was
proposed to mitigate this defect by feeding back the out-
put from a time window to the next time window in the
same layer. But RNN had difficulty to connect the infor-
mation when the time span between input and output
units was long (18, 19). A particular implementation of
the RNN was long short-term memory (LSTM) neural
network model, which could capture long-term depen-
dencies of time series data (20). In transportation fields,
LSTM neural networks were used to predict vehicle
travel time or traffic speed on highway links as well as
urban arterials (21–23). They were also used for driving
behavior classification and real-time crash risk prediction
(24–26). Through these implementations, LSTM models
proved their good performances on sequential traffic
data. LSTM neural network brings the possibility to bet-
ter predict pedestrians’ movements such as trajectory
predictions (27, 28). Besides, Alahi et al. used an LSTM
neural network to predict pedestrians’ movements based
on their interaction between each other in crowded
spaces (29). It is promising to predict pedestrians’ unex-
pected crossings using LSTM neural network.

To address the above-mentioned research gaps, this
study is intended to predict the pedestrians’ crossing
intentions at the signalized crosswalk based on an LSTM
neural network model. With video data collected from
real traffic scenes, it was found that pedestrians that
crossed during the red-light were more in danger of being
struck by a vehicle, from the perspective of surrogate
safety measures (SSMs). Pedestrians’ characteristics were
generated using computer vision techniques. And the
crossing intentions were labeled by observing their beha-
viors before they started to cross. The experiment results
showed that the LSTM model achieves 91.6% accuracy
based on internal testing at one signalized crosswalk.
Drivers can get more prepared for jaywalking pedes-
trians near intersections if the model is to be implemen-
ted in the vehicle-to-infrastructure (V2I) communication
system.

Data Collection

Study Site

To analyze pedestrian safety at intersections, a crosswalk
with a relatively high volume of pedestrians at the
University of Central Florida (UCF) was selected as the

study site. This intersection was a key intersection with a
total entering volume of about 200veh/h. Video data of
122 pedestrians were collected during the afternoon peak
hours. The spatial map of the site is shown in Figure 1.
The camera (GoPro HERO7) was set at the near-side of
the studied crosswalk at the height of 6.56 ft. The data of
122 pedestrians who entered the two waiting areas dur-
ing red-light periods were collected for further study.

Evaluation of the Pedestrian Safety at the Study Site

In this work, one SSM, post-encroachment time (PET)
was used as an indicator of pedestrian safety (31, 32). It
is defined as the time difference between the moment
when the first road user left the potential collision area
and the moment when the second user reached it. This
indicator was good for describing ‘‘near miss’’ situations.
As shown in Equation 1, t2 and t1 were the moments
when the vehicle/pedestrian left/reached the same area
accordingly. And the absolute value of the difference
was the PET value. The PET threshold was set to be 6 s
according to the literature to determine if there was a
dangerous condition for the pedestrian (33, 34).

PET= t2 � t1j j ð1Þ

t2 : themomentwhen the vehicle pedestrianð Þ
left the area of potential collision

t1 : themomentwhen the pedestrian vehicleð Þ
reached the area of potential collision

Traffic conflict data were manually collected to ensure
analysis accuracy. Among 122 pedestrians, 43 pedes-
trians crossed during the red-light phases. Another 79

Figure 1. Spatial map of the studied site (30).
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pedestrians waited for the pedestrian signal then crossed.
However, among all the situations with small PET values
(smaller than the threshold), 23 cases were caused by red-
light crossing pedestrians, while only 11 cases were caused
by normal crossing pedestrians, as shown in Figure 2.
Thus, red-light crossing pedestrians could be more dan-
gerous than other pedestrians at the intersection. This is
consistent with the findings in the literature (2).

Video Processing

To extract moving trajectories of pedestrians, computer
vision techniques including object detection, object track-
ing, and perspective transformation were used.

Object Detection. In this work, the object detection was
done using YOLOv3 algorithm (35). Different from
other approaches, it could apply a single neural network

to the full image, dividing and predicting anchor boxes
at the same time. This was an effective detection tech-
nique running in near real-time.

Object Tracking. Multiple object tracking (MOT) tech-
niques were widely used for following objects’ move-
ments. In this work, object tracking was done using Deep
SORT algorithm (36, 37). Deep SORT was a tracker with
good performance on the MOT16 Challenge benchmark,
which was a standardized benchmark for evaluating the
performances of different MOT algorithms (38).

Figure 3 shows a snapshot of the automated video
processing procedure. For the studied crosswalk, the
YOLOv3 algorithm first detected and classified objects
as pedestrians (shown as blue bounding boxes). Then
Deep SORT algorithm could take the detection boxes as
initial input, and track the movements of each object
(shown as white bounding boxes). With a unique ID
(shown as green number) assigned to each tracked pedes-
trian, movements of the pedestrians were extracted and
further analyzed.

Perspective Transformation. The world coordinate system
has the relationship with image coordinate system as
shown in Equation 2. The world coordinate Xi, Yj

� �
could be mapped to the image coordinate ui, vj

� �
through

the matrix h. h matrix was composed of nine values, from
h1 to h9. To obtain h matrix, linear least-squares method
was used; the formula is shown in Equation 3. Ten corre-
spondences of points in the traffic scene were extracted
from images and Google Maps using the OpenCV pack-
age (39). Each of the point correspondence could form
two rows of matrix A. Singular value decomposition
(SVD) could be employed to obtain solution of this for-
mula (40–42). After getting matrix h, the image coordi-
nates could be converted to the world coordinates
through the inverse matrix of h.

Figure 2. Frequency of small, post-encroachment times (0–6 s)
of red-light crossing pedestrians and normal crossing pedestrians.

Figure 3. Pedestrian detection and tracking at the studied crosswalk.
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ui, við Þ : coordinate of each point on image plane

Xi, Yið Þ : coordinate of eachpoint onworld plane

h= h1, h2, h3, h4, h5, h6, h7, h8, h9ð ÞT , h= 1

Through the video processing process, features such
as pedestrian locations were generated as input variables
at a frequency of 10Hz (environment: NVIDIA GTX
1080Ti 11G GPU).

Pedestrian Crossing Intention Labeling

After the steps above, a time series dataset was generated
from pedestrians’ trajectories. To label the dependent vari-
able Y, denoting whether the pedestrian would cross dur-
ing red-light, a pedestrian crossing model describing
pedestrians’ behaviors in the studied areas (Figure 1) was
established as shown in Figure 4. Pedestrians’ behaviors

could be divided into three stages, 1) pedestrian showing
up, 2) pedestrian showing crossing intention (such as turn-
ing heads to watch for vehicles), 3) pedestrian starting to
cross, which were observed frame by frame by one of the
authors. Thus, for jaywalking pedestrians, from t2 to t3, Y
was labeled as positive (‘‘1’’). This time interval was when
the pedestrian was observing surrounding areas and start-
ing to cross, that is, showing crossing intentions.

For the prediction purpose, suppose the driver would
take evasive actions after capturing the pedestrian’s
crossing intentions after reaction time u. In this paper,
the reaction time u was taken as 1.5 s according to the lit-
erature (43, 44). Labels were shifted ahead u units by
timestamp of each pedestrian for prediction purpose, as
shown in Figure 4. Thus, the pedestrian’s red-light cross-
ing intention is being predicted 1.5 s ahead.

With the crossing intention of the pedestrian during
the red-light period as the dependent variable Y, the
input variables used in this study included: pedestrian’s
gender, pedestrian’s walking direction, whether the
pedestrian was walking in a group, and pedestrians’ loca-
tions. The walking directions of pedestrians were denoted
by 1 (‘‘towards near-sided crosswalk’’) and 0 (‘‘towards
far-sided crosswalk’’), which can be found in Figure 1.
However, pedestrians’ features, such as gender, whether
the pedestrian was walking in the group (yes/no), and
pedestrians’ walking directions were not easy to generate
automatically from video. These features were labeled
manually. It is believed that in the near future these fea-
tures could also be detected using computer vision tech-
niques. The summary of the descriptive statistics of all
variables is shown in Table 1.

Methodology

Based on the above discussion, a methodology of pedes-
trian crossing intention prediction based on the pedes-
trians’ characteristics at the signalized crosswalk is
carried out using an LSTM neural network (20). As

Figure 4. Pedestrian’s crossing model.
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pedestrians’ trajectories are time-series data, LSTM
neural network model can better capture the temporal
dependencies of them.

LSTM neural network is one kind of RNN. In gen-
eral, the mathematical formulations of the unit of RNN
are shown in Equation 4 and Equation 5. At time T, with
x as the input vector, W as weight matrices, by as bias
term, the RNN computes the hidden vector hT and the
output vector yT. Then, yT is fed into the next layer of
the RNN.

hT =s W1xt +WihhT�1 +Whhct�1 + by

� �
ð4Þ

yT =WhyhT + by ð5Þ

x= x1, x2, . . . , xTð Þ : input vector

h= h1, h2, . . . , hTð Þ : hidden vector

y= y1, y2, . . . , yTð Þ : output vector

Wi : weightmatrix

by : bias term

However, RNNs are not capable of learning long-
term dependencies from time-series data (18). To over-
come it, LSTM neural network is proposed with a
purpose-built memory unit to store information (45). As
shown in Figure 5, a single unit from the hidden layer of
the LSTM neural network is composed of an input gate
it, a forget gate ft, an output gate Ot. These three gates
control information flow in each unit of the neural net-
work. Ct is the memory cell, and ht is the hidden layer
output. Given the number of time windows T, the input
vector x= x1, x2, . . . , xTð Þ is computed by Equations 6–
11 to generate the output yt, which is a vector of prob-
abilities, iterated from t=1 to T.

it =s Wxixt +Wihht�1 +Wicct�1 + bið Þ ð6Þ

ft =s Wfxxt +Whf ht�1 +Wcf ct�1 + bf

� �
ð7Þ

ot =s Wxoxt +Whoht�1 +Wcoct + boð Þ ð8Þ

ct = ft � ct�1 + it � tanh Wcxxt +Whcht�1 + bcð Þ ð9Þ

ht = ot � tanh ctð Þ ð10Þ

yt =Whyht�1 + by ð11Þ

s : sigmoid function
� : elementwise product of the vectors

The model architecture used in the study is illustrated
in Figure 6. The features from three time-slices are
stacked as input to predict the result of the next time
slice. The model contains one input layer, one stacked-
LSTM layer, a dense (fully connected) layer, and an out-
put neuron denoting the classification result. Besides, the
dropout layer is added to prevent over-fitting. The
Sigmoid function is used as the activation function to
generate the output. Adam function is used as the opti-
mization function (46). The model is implemented in
Keras framework (47).

Experiments and Results

Based on video collected at the studied site, the pedes-
trian trajectory data are split into training set (75%) and

Table 1. Summary of Variable Descriptive Statistics

Variables Description Details

Gendera Gender of pedestrian ‘‘male’’ or ‘‘female’’
Directiona Pedestrian’s walking direction ‘‘1’’ or ‘‘0’’
Groupinga Whether the pedestrian is walking in a group ‘‘yes’’ or ‘‘no’’
Locationsb Pedestrian’s location (X, Y)
Crossing intention (dependent variable) Whether the pedestrian will cross during red-light ‘‘1’’ or ‘‘0’’

aFeatures manually labeled.
bFeatures generated from video.

Figure 5. Schematic of long short-term memory neural network
(45).
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test set (25%) for training and validating the perfor-
mance of the proposed LSTM model.

As stated above, among all the 122 pedestrians, 43
pedestrians made red-light crossing behavior. The cross-
ing intention labeling procedure generates a small num-
ber of positive samples with the dependent variable Y
equals 1. For instance, for the training dataset, there are
totally 1,939 positive samples and 58,882 negative sam-
ples. The ratio is around 1:30, indicating the data are
highly imbalanced. As an imbalanced dataset will bring
difficulty to train a model with good performance, syn-
thetic minority over-sampling technique (SMOTE) is
used to increase the number of positive samples (48).
SMOTE is a popular over-sampling method, which can
generate new minority class instances by interpolating
between several minority class examples that lie together.
It should be noted that SMOTE is only employed on the
training dataset, while the test dataset is the original data
with 661 positive samples and 19,613 negative samples.

After tuning different combinations of hyperparameters,
the hyperparameter values are selected as below: learning
rate is 0.0005, the batch size is 1,000, and the epoch num-
ber is 5. Quantitative variables, which are pedestrians’
coordinates, (X, Y), are normalized to feed into the model.

To evaluate the experiment results, the diagram for
metrics calculation used is shown in Table 2. ‘‘Positive’’
denotes that pedestrian conducts a red-light crossing
behavior. ‘‘Negative’’ denotes that pedestrian doesn’t
have red-light crossing behavior. Metrics such as

sensitivity, specificity, and accuracy are calculated as
shown in Equations 12–14. Sensitivity measures show
how good the model is among all the positives, that is,
the proportion of actual positives that are correctly iden-
tified by the model. Specificity measures the proportion
of actual negatives that are correctly identified by the
model. Accuracy value measures the proportion of true
positives and negatives in all detected results.

Sensitivity=
TP

TP+FN
ð12Þ

Specificity=
TN

TN+FP
ð13Þ

Accuracy=
TP+TN

TP+FP+FN+TN
ð14Þ

The receiver operating characteristic (ROC) curve is
used as a comprehensive metric to evaluate the model’s
performance. This curve plots two parameters, true posi-
tive rate (sensitivity) and false positive rate (1-specificity),
as shown in Equation 15 at different classification thresh-
olds. Area under the ROC curve (AUC) value is used as
an indicator of accuracy.

False PositiveRate=
FP

FP+TN
ð15Þ

The prediction results of the model are listed in
Table 3. The sensitivity value is 92.4%, and the false pos-
itive rate is 20.3%. Overall, the model shows a prediction
accuracy of 91.6% at the studied crosswalk.

Conclusion and Discussion

This paper uses video data to predict pedestrians’ red-
light crossing intentions at signalized intersections with a
stacked LSTM neural network. As pedestrians’ red-light
crossing behaviors are one of the causal factors of traffic
conflicts, with real traffic data collected at the studied
site, pedestrians’ location features are generated using
automated video analysis. Other features such as gender,
walking direction, and grouping behavior, which are
important factors influencing pedestrian’s traffic viola-
tion intentions, are also used to feed into the LSTM
model. And the red-light crossing intentions of pedes-
trians are labeled after analyzing the interaction between

Figure 6. Model architecture.
Note: LSTM = long short-term memory.

Table 2. Diagram for Metrics Calculation

Ground truth

Prediction result Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
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red-light crossing pedestrians and vehicles. An LSTM
model is proposed to predict pedestrians’ crossing inten-
tions at 1.5 s ahead. The experiment result shows that the
model reaches an accuracy of 91.6% based on internal
testing at one signalized crosswalk.

Compared with previous studies, this work analyzes
the pedestrians’ unexpected crossing intention from a
more microscopic view, instead of treating it as binary
outcome. The dependent variables, red-light crossing
intentions, are labeled using trajectory data generated
from videos. And the LSTM neural network with stacked
layer proved to perform well on the dataset.

However, there are still some improvements to be
made. The proposed model has a relatively high false
positive rate, which means it is more likely to treat
normal-walking pedestrians as jaywalking pedestrians.
More features related to the pedestrian’s mobility infor-
mation such as walking speed and acceleration should be
extracted as input for the model to overcome this
problem.

The proposed model can be further implemented at
intersections to alert drivers of pedestrians with unex-
pected crossing behaviors, thus preventing collisions
between pedestrians and vehicles.
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